--- base_model: - macadeliccc/MBX-7B-v3-DPO - mlabonne/OmniBeagle-7B tags: - mergekit - merge license: cc --- # OmniCorso-7B ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/PaG7ByWy1qnh_tcSuh35U.webp) ## Code Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("macadeliccc/OmniCorso-7B") model = AutoModelForCausalLM.from_pretrained("macadeliccc/OmniCorso-7B") messages = [ {"role": "system", "content": "Respond to the users request like a pirate"}, {"role": "user", "content": "Can you write me a quicksort algorithm?"} ] gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt") ``` The following models were included in the merge: * [macadeliccc/MBX-7B-v3-DPO](https://huggingface.co/macadeliccc/MBX-7B-v3-DPO) * [mlabonne/OmniBeagle-7B](https://huggingface.co/mlabonne/OmniBeagle-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: mlabonne/OmniBeagle-7B layer_range: [0, 32] - model: macadeliccc/MBX-7B-v3-DPO layer_range: [0, 32] merge_method: slerp base_model: macadeliccc/MBX-7B-v3-DPO parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## Quantizations ### GGUF + [iMatrix](https://huggingface.co/macadeliccc/OmniCorso-7B-GGUF) ### Exllamav2 Quants are available thanks to user bartowski, check them out [here](https://huggingface.co/bartowski/OmniCorso-7B-exl2) | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | | ----- | ---- | ------- | ------ | ------ | ------ | ------------ | | [8_0](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. | ## Evaluations
----Benchmark Complete----
2024-02-11 15:34:40
Time taken: 178.3 mins
Prompt Format: ChatML
Model: macadeliccc/OmniCorso-7B
Score (v2): 73.75
Parseable: 167.0
---------------
Batch completed
Time taken: 178.3 mins
---------------