--- base_model: - macadeliccc/MBX-7B-v3-DPO - mlabonne/OmniBeagle-7B tags: - mergekit - merge license: cc --- # OmniCorso-7B ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/PaG7ByWy1qnh_tcSuh35U.webp) ## Code Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("macadeliccc/OmniCorso-7B") model = AutoModelForCausalLM.from_pretrained("macadeliccc/OmniCorso-7B") messages = [ {"role": "system", "content": "Respond to the users request like a pirate"}, {"role": "user", "content": "Can you write me a quicksort algorithm?"} ] gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt") ``` The following models were included in the merge: * [macadeliccc/MBX-7B-v3-DPO](https://huggingface.co/macadeliccc/MBX-7B-v3-DPO) * [mlabonne/OmniBeagle-7B](https://huggingface.co/mlabonne/OmniBeagle-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: mlabonne/OmniBeagle-7B layer_range: [0, 32] - model: macadeliccc/MBX-7B-v3-DPO layer_range: [0, 32] merge_method: slerp base_model: macadeliccc/MBX-7B-v3-DPO parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## GGUF + [iMatrix](https://huggingface.co/macadeliccc/OmniCorso-7B-GGUF) ## Evaluations
----Benchmark Complete----
2024-02-11 15:34:40
Time taken: 178.3 mins
Prompt Format: ChatML
Model: macadeliccc/OmniCorso-7B
Score (v2): 73.75
Parseable: 167.0
---------------
Batch completed
Time taken: 178.3 mins
---------------