macedonizer commited on
Commit
a48dbbe
1 Parent(s): c2f7ea2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -19
README.md CHANGED
@@ -1,14 +1,13 @@
1
  ---
2
  language:
3
- - mk
4
  thumbnail: https://huggingface.co/macedonizer/mk-roberta-base/blaze-koneski.jpg
5
  license: apache-2.0
6
  datasets:
7
- - wiki-mk
8
- - time-mk-news-2010-2015
9
  ---
10
 
11
- # mk-gpt2
12
  Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
13
  Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in
14
  [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
@@ -32,14 +31,14 @@ Here is how to use this model to get the features of a given text in PyTorch:
32
  import random
33
  from transformers import AutoTokenizer, AutoModelWithLMHead
34
 
35
- tokenizer = AutoTokenizer.from_pretrained('macedonizer/mk-gpt2') \
36
- model = AutoModelWithLMHead.from_pretrained('macedonizer/mk-gpt2')
37
 
38
- input_text = 'Скопје е '
39
 
40
  if len(input_text) == 0: \
41
  encoded_input = tokenizer(input_text, return_tensors="pt") \
42
- output = model.generate( \
43
  bos_token_id=random.randint(1, 50000), \
44
  do_sample=True, \
45
  top_k=50, \
@@ -50,17 +49,16 @@ if len(input_text) == 0: \
50
  else: \
51
  encoded_input = tokenizer(input_text, return_tensors="pt") \
52
  output = model.generate( \
53
- **encoded_input, \
54
- bos_token_id=random.randint(1, 50000), \
55
- do_sample=True, \
56
- top_k=50, \
57
- max_length=1024, \
58
- top_p=0.95, \
59
- num_return_sequences=1, \
60
- )
61
 
62
- decoded_output = [] \
63
- for sample in output: \
64
- decoded_output.append(tokenizer.decode(sample, skip_special_tokens=True))
65
 
66
  print(decoded_output)
 
1
  ---
2
  language:
3
+ - gr
4
  thumbnail: https://huggingface.co/macedonizer/mk-roberta-base/blaze-koneski.jpg
5
  license: apache-2.0
6
  datasets:
7
+ - wiki-gr
 
8
  ---
9
 
10
+ # gr-gpt2
11
  Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
12
  Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in
13
  [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
 
31
  import random
32
  from transformers import AutoTokenizer, AutoModelWithLMHead
33
 
34
+ tokenizer = AutoTokenizer.from_pretrained('macedonizer/gr-gpt2') \
35
+ nmodel = AutoModelWithLMHead.from_pretrained('macedonizer/gr-gpt2')
36
 
37
+ input_text = 'Η Αθήνα είναι'
38
 
39
  if len(input_text) == 0: \
40
  encoded_input = tokenizer(input_text, return_tensors="pt") \
41
+ output = model.generate( \
42
  bos_token_id=random.randint(1, 50000), \
43
  do_sample=True, \
44
  top_k=50, \
 
49
  else: \
50
  encoded_input = tokenizer(input_text, return_tensors="pt") \
51
  output = model.generate( \
52
+ **encoded_input, \
53
+ bos_token_id=random.randint(1, 50000), \
54
+ do_sample=True, \
55
+ top_k=50, \
56
+ max_length=1024, \
57
+ top_p=0.95, \
58
+ num_return_sequences=1, \
59
+ )
60
 
61
+ decoded_output = [] \\nfor sample in output: \
62
+ decoded_output.append(tokenizer.decode(sample, skip_special_tokens=True))
 
63
 
64
  print(decoded_output)