GGUF
Composer
MosaicML
llm-foundry
File size: 11,735 Bytes
24e8155
 
 
 
 
 
 
 
 
 
 
 
d918b3f
24e8155
 
 
 
 
97dc9e2
24e8155
00a65ff
97dc9e2
 
5dc61a9
fec4e06
97dc9e2
24e8155
 
 
 
 
 
 
 
 
 
 
fd42b84
24e8155
0d1c20f
24e8155
 
 
fd42b84
 
 
24e8155
 
 
fd42b84
24e8155
fd42b84
24e8155
 
 
042a13e
0d1c20f
042a13e
24e8155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542e88f
 
 
0d1c20f
542e88f
a9318d5
 
 
 
24e8155
ae0bb35
24e8155
 
 
 
 
ae0bb35
24e8155
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
---
license: apache-2.0
tags:
- Composer
- MosaicML
- llm-foundry
datasets:
- the_pile_books3
inference: false
---
[![banner](https://maddes8cht.github.io/assets/buttons/Huggingface-banner.jpg)]()

I'm constantly enhancing these model descriptions to provide you with the most relevant and comprehensive information

# mpt-7b-storywriter - GGUF
- Model creator: [mosaicml](https://huggingface.co/mosaicml)
- Original model: [mpt-7b-storywriter](https://huggingface.co/mosaicml/mpt-7b-storywriter)

MPT-7b and MPT-30B are part of the family of Mosaic Pretrained Transformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference.


---
# Brief
MPT-7B Storywriter is a Model based on MPT-7b, designed to read and write fictional stories with super long context lengths.

---



# About GGUF format

`gguf` is the current file format used by the [`ggml`](https://github.com/ggerganov/ggml) library.
A growing list of Software is using it and can therefore use this model.
The core project making use of the ggml library is the [llama.cpp](https://github.com/ggerganov/llama.cpp) project by Georgi Gerganov

# Quantization variants

There is a bunch of quantized files available to cater to your specific needs. Here's how to choose the best option for you:

# Legacy quants

Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are `legacy` quantization types.
Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants.
## Note:
Now there's a new option to use K-quants even for previously 'incompatible' models, although this involves some fallback solution that makes them not *real* K-quants. More details can be found in affected model descriptions.
(This mainly refers to Falcon 7b and Starcoder models)

# K-quants

K-quants are designed with the idea that different levels of quantization in specific parts of the model can optimize performance, file size, and memory load.
So, if possible, use K-quants.
With a Q6_K, you'll likely find it challenging to discern a quality difference from the original model - ask your model two times the same question and you may encounter bigger quality differences.




---

# Original Model Card:
# MPT-7B-StoryWriter-65k+

MPT-7B-StoryWriter-65k+ is a model designed to read and write fictional stories with super long context lengths.
It was built by finetuning MPT-7B with a context length of 65k tokens on a filtered fiction subset of the [books3 dataset](https://huggingface.co/datasets/the_pile_books3).
At inference time, thanks to [ALiBi](https://arxiv.org/abs/2108.12409), MPT-7B-StoryWriter-65k+ can extrapolate even beyond 65k tokens.
We demonstrate generations as long as 84k tokens on a single node of 8 A100-80GB GPUs in our [blogpost](https://www.mosaicml.com/blog/mpt-7b).
  * License: Apache 2.0

This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture.

## Model Date

May 5, 2023

## Model License

Apache 2.0

## Documentation

* [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b)
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)!


## How to Use

Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package.

It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more.

```python
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained(
  'mosaicml/mpt-7b-storywriter',
  trust_remote_code=True
)
```

To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision:
```python
import torch
import transformers

name = 'mosaicml/mpt-7b-storywriter'

config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.attn_config['attn_impl'] = 'triton'
config.init_device = 'cuda:0' # For fast initialization directly on GPU!

model = transformers.AutoModelForCausalLM.from_pretrained(
  name,
  config=config,
  torch_dtype=torch.bfloat16, # Load model weights in bfloat16
  trust_remote_code=True
)
```

Although the model was trained with a sequence length of 2048 and finetuned with a sequence length of 65536,
ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
```python
import transformers

name = 'mosaicml/mpt-7b'

config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.max_seq_len = 83968 # (input + output) tokens can now be up to 83968

model = transformers.AutoModelForCausalLM.from_pretrained(
  name,
  config=config,
  trust_remote_code=True
)
```

This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.

```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
```

The model can then be used, for example, within a text-generation pipeline.  
Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).

```python
from transformers import pipeline

pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')

with torch.autocast('cuda', dtype=torch.bfloat16):
    print(
        pipe('Here is a recipe for vegan banana bread:\n',
            max_new_tokens=100,
            do_sample=True,
            use_cache=True))
```

## Community-Created Resources

These were not created by MosaicML, but you may find them useful. These links are not an endorsement of the creators or their content.

- [Oobabooga Running MPT-7B-Storywriter](https://youtu.be/QVVb6Md6huA)
- [NEW MPT-7B-StoryWriter CRUSHES GPT-4!](https://www.youtube.com/watch?v=O9Y_ZdsuKWQ&t=649s) - Has a long section on running locally using Oobabooga

## Example Epilogue

The full text of the _The Great Gatsby_ (67873 tokens) was fed to the model, followed by the text "EPILOGUE"

**TheRealFitzgerald233**:

> ...
>
> So we beat on, boats against the current, borne back ceaselessly into the past
>
> EPILOGUE

**MPT-7B-StoryWriter**:

>I have lived so long in the shadow of this dream that I may never see the bright sunlight of reality. I may look up some morning and find that I am six feet under, and that Gatsby, who gave me the dream and everything else, will have vanished behind me.
>
>And so it was. I had hardly crossed the threshold of the old world when my eye caught the headlines of a newspaper, and I knew at once that my dream was over. I knew that Gatsby was dead.
>
>And I knew that day that I didn't love her.
>
>That night I took the last train for West Egg, and when I reached home I went directly to my attic and brought down all Gatsby's letters.
>
>I have sorted them by date and placed them in the order in which they were written. They are very few in number.
>
>They are dated between April of nineteen eighteen and January of nineteen nineteen, and the last one I have here is the one that told me he was dead.
>
>There is something in that last letter that frightens me. It is the sense of a finality, of a completeness. I never heard of him after that, and I was glad.
>
>But a few months ago I read somewhere that he had been seen in New York. He had become a great man.
>
>And I knew that he had not changed at all.

## Model Description

The architecture is a modification of a standard decoder-only transformer.

The model has been modified from a standard transformer in the following ways:
* It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
* It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
* It does not use biases


| Hyperparameter | Value |
|----------------|-------|
|n_parameters | 6.7B |
|n_layers | 32 |
| n_heads | 32 |
| d_model | 4096 |
| vocab size | 50432 |
| sequence length | **65536** |

## PreTraining Data

For more details on the pretraining process, see [MPT-7B](https://huggingface.co/mosaicml/mpt-7b).

The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.

### Training Configuration

This model was trained on 8 A100-80GBs for about 2 days using the [MosaicML Platform](https://www.mosaicml.com/platform).
The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the [LION](https://arxiv.org/abs/2302.06675) optimizer.

## Limitations and Biases

_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_

MPT-7B-StoryWriter can produce factually incorrect output, and should not be relied on to produce factually accurate information.
MPT-7B-StoryWriter was trained on various public datasets.
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.


## Acknowledgements

This model was finetuned by Alex Trott and the MosaicML NLP team

## MosaicML Platform

If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b).

## Disclaimer

The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.


## Citation

Please cite this model using the following format:

```
@online{MosaicML2023Introducing,
    author    = {MosaicML NLP Team},
    title     = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs},
    year      = {2023},
    url       = {www.mosaicml.com/blog/mpt-7b},
    note      = {Accessed: 2023-03-28}, % change this date
    urldate   = {2023-03-28} % change this date
}
```

***End of original Model File***
---


## Please consider to support my work
**Coming Soon:** I'm in the process of launching a sponsorship/crowdfunding campaign for my work. I'm evaluating Kickstarter, Patreon, or the new GitHub Sponsors platform, and I am hoping for some support and contribution to the continued availability of these kind of models. Your support will enable me to provide even more valuable resources and maintain the models you rely on. Your patience and ongoing support are greatly appreciated as I work to make this page an even more valuable resource for the community.

<center>

[![GitHub](https://maddes8cht.github.io/assets/buttons/github-io-button.png)](https://maddes8cht.github.io)
[![Stack Exchange](https://stackexchange.com/users/flair/26485911.png)](https://stackexchange.com/users/26485911)
[![GitHub](https://maddes8cht.github.io/assets/buttons/github-button.png)](https://github.com/maddes8cht)
[![HuggingFace](https://maddes8cht.github.io/assets/buttons/huggingface-button.png)](https://huggingface.co/maddes8cht)
[![Twitter](https://maddes8cht.github.io/assets/buttons/twitter-button.png)](https://twitter.com/maddes1966)

</center>