Commit
·
10cb4bc
1
Parent(s):
ca5d7c2
Update README.md (#8)
Browse files- Update README.md (d878eb3c1feeb614da107d0098c50a2293071b7e)
Co-authored-by: Aviel Makmal <avielmak@users.noreply.huggingface.co>
README.md
CHANGED
@@ -65,6 +65,8 @@ $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: applica
|
|
65 |
Or Python API:
|
66 |
|
67 |
```
|
|
|
|
|
68 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
69 |
|
70 |
model = AutoModelForSequenceClassification.from_pretrained("madhurjindal/autonlp-Gibberish-Detector-492513457", use_auth_token=True)
|
@@ -74,4 +76,26 @@ tokenizer = AutoTokenizer.from_pretrained("madhurjindal/autonlp-Gibberish-Detect
|
|
74 |
inputs = tokenizer("I love Machine Learning!", return_tensors="pt")
|
75 |
|
76 |
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
```
|
|
|
65 |
Or Python API:
|
66 |
|
67 |
```
|
68 |
+
import torch
|
69 |
+
import torch.nn.functional as F
|
70 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
71 |
|
72 |
model = AutoModelForSequenceClassification.from_pretrained("madhurjindal/autonlp-Gibberish-Detector-492513457", use_auth_token=True)
|
|
|
76 |
inputs = tokenizer("I love Machine Learning!", return_tensors="pt")
|
77 |
|
78 |
outputs = model(**inputs)
|
79 |
+
|
80 |
+
probs = F.softmax(outputs.logits, dim=-1)
|
81 |
+
|
82 |
+
predicted_index = torch.argmax(probs, dim=1).item()
|
83 |
+
|
84 |
+
predicted_prob = probs[0][predicted_index].item()
|
85 |
+
|
86 |
+
labels = model.config.id2label
|
87 |
+
|
88 |
+
predicted_label = labels[predicted_index]
|
89 |
+
|
90 |
+
for i, prob in enumerate(probs[0]):
|
91 |
+
print(f"Class: {labels[i]}, Probability: {prob:.4f}")
|
92 |
+
```
|
93 |
+
|
94 |
+
Another simplifed solution with transformers pipline:
|
95 |
+
|
96 |
+
```
|
97 |
+
from transformers import pipeline
|
98 |
+
selected_model = "madhurjindal/autonlp-Gibberish-Detector-492513457"
|
99 |
+
classifier = pipeline("text-classification", model=selected_model)
|
100 |
+
classifier("I love Machine Learning!")
|
101 |
```
|