File size: 1,906 Bytes
1695ab4 ad05911 1695ab4 c3f916d ad05911 1695ab4 3eecf2f 1695ab4 3eecf2f 1695ab4 67e9a30 1695ab4 ad05911 1695ab4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: wav2vec2-attempt2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-attempt2
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2685
- Accuracy: 0.9373
- F1: 0.9372
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 9
- eval_batch_size: 9
- seed: 42
- gradient_accumulation_steps: 12
- total_train_batch_size: 108
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.0285 | 1.0 | 646 | 0.9877 | 0.7123 | 0.7029 |
| 0.6367 | 2.0 | 1293 | 0.5708 | 0.8314 | 0.8333 |
| 0.3915 | 3.0 | 1940 | 0.4389 | 0.8745 | 0.8730 |
| 0.2359 | 4.0 | 2587 | 0.3361 | 0.9077 | 0.9082 |
| 0.0987 | 5.0 | 3234 | 0.2901 | 0.9246 | 0.9248 |
| 0.0705 | 5.99 | 3876 | 0.2685 | 0.9373 | 0.9372 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|