maghrane commited on
Commit
9498a98
1 Parent(s): 21786d1

Upload MiniCPMV

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "full_model",
3
+ "architectures": [
4
+ "MiniCPMV"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_minicpm.MiniCPMVConfig",
10
+ "AutoModel": "openbmb/MiniCPM-Llama3-V-2_5--modeling_minicpmv.MiniCPMV",
11
+ "AutoModelForCausalLM": "modeling_minicpmv.MiniCPMV"
12
+ },
13
+ "batch_vision_input": true,
14
+ "bos_token_id": 128000,
15
+ "drop_vision_last_layer": false,
16
+ "eos_token_id": 128001,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 4096,
19
+ "image_size": 448,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 14336,
22
+ "max_position_embeddings": 8192,
23
+ "mlp_bias": false,
24
+ "mm_use_im_start_end": true,
25
+ "model_type": "minicpmv",
26
+ "num_attention_heads": 32,
27
+ "num_hidden_layers": 32,
28
+ "num_key_value_heads": 8,
29
+ "patch_size": 14,
30
+ "pretraining_tp": 1,
31
+ "query_num": 96,
32
+ "rms_norm_eps": 1e-05,
33
+ "rope_scaling": null,
34
+ "rope_theta": 500000.0,
35
+ "slice_config": {
36
+ "max_slice_nums": 9,
37
+ "model_type": "minicpmv"
38
+ },
39
+ "slice_mode": true,
40
+ "tie_word_embeddings": false,
41
+ "torch_dtype": "float32",
42
+ "transformers_version": "4.41.2",
43
+ "use_cache": true,
44
+ "vision_config": {
45
+ "hidden_size": 1152,
46
+ "image_size": 980,
47
+ "intermediate_size": 4304,
48
+ "model_type": "idefics2",
49
+ "num_attention_heads": 16,
50
+ "num_hidden_layers": 27,
51
+ "patch_size": 14
52
+ },
53
+ "vocab_size": 128256
54
+ }
configuration_minicpm.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ MiniCPM model configuration"""
21
+ import os
22
+ from typing import Union
23
+
24
+ from transformers.utils import logging
25
+ from transformers import LlamaConfig, PretrainedConfig
26
+ from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionConfig
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+
31
+ class MiniCPMVSliceConfig(PretrainedConfig):
32
+ model_type = "minicpmv"
33
+
34
+ def __init__(
35
+ self,
36
+ patch_size=14,
37
+ max_slice_nums=9,
38
+ scale_resolution=448,
39
+ **kwargs,
40
+ ):
41
+ super().__init__(**kwargs)
42
+ self.patch_size = patch_size
43
+ self.max_slice_nums = max_slice_nums
44
+ self.scale_resolution = scale_resolution
45
+
46
+ @classmethod
47
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
48
+ cls._set_token_in_kwargs(kwargs)
49
+
50
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
51
+
52
+ if config_dict.get("model_type") == "minicpmv":
53
+ config_dict = config_dict["slice_config"]
54
+
55
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
56
+ logger.warning(
57
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
58
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
59
+ )
60
+
61
+ return cls.from_dict(config_dict, **kwargs)
62
+
63
+
64
+
65
+ class MiniCPMVConfig(LlamaConfig):
66
+ model_type = "minicpmv"
67
+ keys_to_ignore_at_inference = ["past_key_values"]
68
+
69
+ default_vision_config = {
70
+ "hidden_size": 1152,
71
+ "image_size": 980,
72
+ "intermediate_size": 4304,
73
+ "model_type": "idefics2",
74
+ "num_attention_heads": 16,
75
+ "num_hidden_layers": 27,
76
+ "patch_size": 14,
77
+ }
78
+
79
+ def __init__(
80
+ self,
81
+ use_cache=True,
82
+ query_num=64,
83
+ image_size=448,
84
+ drop_vision_last_layer=True,
85
+ batch_vision_input=True,
86
+ slice_config=None,
87
+ vision_config=None,
88
+ **kwargs,
89
+ ):
90
+ self.use_cache = use_cache
91
+ self.query_num = query_num
92
+ self.image_size = image_size
93
+ self.drop_vision_last_layer = drop_vision_last_layer
94
+ self.batch_vision_input = batch_vision_input
95
+
96
+ if slice_config is None:
97
+ self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1)
98
+ else:
99
+ self.slice_config = MiniCPMVSliceConfig(**slice_config)
100
+ self.slice_mode = True
101
+
102
+ # same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
103
+ if vision_config is None:
104
+ self.vision_config = Idefics2VisionConfig(**self.default_vision_config)
105
+ logger.info("vision_config is None, using default vision config")
106
+ elif isinstance(vision_config, dict):
107
+ self.vision_config = Idefics2VisionConfig(**vision_config)
108
+ elif isinstance(vision_config, Idefics2VisionConfig):
109
+ self.vision_config = vision_config
110
+
111
+ self.patch_size = self.vision_config.patch_size
112
+
113
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "eos_token_id": 128001,
5
+ "transformers_version": "4.41.2"
6
+ }
model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2226d735f021174620a0119802e7b8fa5a9398db98d1ae2439cdb39365d8491a
3
+ size 4886466296
model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:002d366e0660bc0b27ce5154c85a8d10a50772886dfb9e0a378584df5aa896ab
3
+ size 4832007640
model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30b338ce4bfbd431ba5a1c2d9227e412cbcb921fed063a37d6495bb665b9898e
3
+ size 4999813320
model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb8b635cfa530bf039e6256665550fedb777d14ed4d47e6fb895453bcd485efb
3
+ size 4999813336
model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e82f796fa848b135accfb227dc7074aa75608dad25b6d0bfc51191d9ff26b61
3
+ size 4832007688
model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2f6eb553265900f7c28eeca523e8dbc3440d8823024967a15c1f0926aaa5d07
3
+ size 4999813336
model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0564d9fd568e043bbeb9f3f1b1951b194e5a54d5aa5209d8791922f89ba2589f
3
+ size 4598534152
model.safetensors.index.json ADDED
@@ -0,0 +1,748 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 34148369344
4
+ },
5
+ "weight_map": {
6
+ "llm.lm_head.weight": "model-00007-of-00007.safetensors",
7
+ "llm.model.embed_tokens.weight": "model-00001-of-00007.safetensors",
8
+ "llm.model.layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
9
+ "llm.model.layers.0.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
10
+ "llm.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
11
+ "llm.model.layers.0.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
12
+ "llm.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
13
+ "llm.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
14
+ "llm.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
15
+ "llm.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
16
+ "llm.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
17
+ "llm.model.layers.1.input_layernorm.weight": "model-00001-of-00007.safetensors",
18
+ "llm.model.layers.1.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
19
+ "llm.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
20
+ "llm.model.layers.1.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
21
+ "llm.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
22
+ "llm.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
23
+ "llm.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
24
+ "llm.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
25
+ "llm.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
26
+ "llm.model.layers.10.input_layernorm.weight": "model-00003-of-00007.safetensors",
27
+ "llm.model.layers.10.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
28
+ "llm.model.layers.10.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
29
+ "llm.model.layers.10.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
30
+ "llm.model.layers.10.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
31
+ "llm.model.layers.10.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
32
+ "llm.model.layers.10.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
33
+ "llm.model.layers.10.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
34
+ "llm.model.layers.10.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
35
+ "llm.model.layers.11.input_layernorm.weight": "model-00003-of-00007.safetensors",
36
+ "llm.model.layers.11.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
37
+ "llm.model.layers.11.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
38
+ "llm.model.layers.11.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
39
+ "llm.model.layers.11.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
40
+ "llm.model.layers.11.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
41
+ "llm.model.layers.11.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
42
+ "llm.model.layers.11.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
43
+ "llm.model.layers.11.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
44
+ "llm.model.layers.12.input_layernorm.weight": "model-00003-of-00007.safetensors",
45
+ "llm.model.layers.12.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
46
+ "llm.model.layers.12.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
47
+ "llm.model.layers.12.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
48
+ "llm.model.layers.12.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
49
+ "llm.model.layers.12.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
50
+ "llm.model.layers.12.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
51
+ "llm.model.layers.12.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
52
+ "llm.model.layers.12.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
53
+ "llm.model.layers.13.input_layernorm.weight": "model-00003-of-00007.safetensors",
54
+ "llm.model.layers.13.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
55
+ "llm.model.layers.13.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
56
+ "llm.model.layers.13.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
57
+ "llm.model.layers.13.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
58
+ "llm.model.layers.13.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
59
+ "llm.model.layers.13.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
60
+ "llm.model.layers.13.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
61
+ "llm.model.layers.13.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
62
+ "llm.model.layers.14.input_layernorm.weight": "model-00004-of-00007.safetensors",
63
+ "llm.model.layers.14.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
64
+ "llm.model.layers.14.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
65
+ "llm.model.layers.14.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
66
+ "llm.model.layers.14.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
67
+ "llm.model.layers.14.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
68
+ "llm.model.layers.14.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
69
+ "llm.model.layers.14.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
70
+ "llm.model.layers.14.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
71
+ "llm.model.layers.15.input_layernorm.weight": "model-00004-of-00007.safetensors",
72
+ "llm.model.layers.15.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
73
+ "llm.model.layers.15.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
74
+ "llm.model.layers.15.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
75
+ "llm.model.layers.15.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
76
+ "llm.model.layers.15.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
77
+ "llm.model.layers.15.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
78
+ "llm.model.layers.15.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
79
+ "llm.model.layers.15.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
80
+ "llm.model.layers.16.input_layernorm.weight": "model-00004-of-00007.safetensors",
81
+ "llm.model.layers.16.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
82
+ "llm.model.layers.16.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
83
+ "llm.model.layers.16.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
84
+ "llm.model.layers.16.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
85
+ "llm.model.layers.16.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
86
+ "llm.model.layers.16.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
87
+ "llm.model.layers.16.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
88
+ "llm.model.layers.16.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
89
+ "llm.model.layers.17.input_layernorm.weight": "model-00004-of-00007.safetensors",
90
+ "llm.model.layers.17.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
91
+ "llm.model.layers.17.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
92
+ "llm.model.layers.17.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
93
+ "llm.model.layers.17.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
94
+ "llm.model.layers.17.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
95
+ "llm.model.layers.17.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
96
+ "llm.model.layers.17.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
97
+ "llm.model.layers.17.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
98
+ "llm.model.layers.18.input_layernorm.weight": "model-00004-of-00007.safetensors",
99
+ "llm.model.layers.18.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
100
+ "llm.model.layers.18.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
101
+ "llm.model.layers.18.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
102
+ "llm.model.layers.18.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
103
+ "llm.model.layers.18.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
104
+ "llm.model.layers.18.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
105
+ "llm.model.layers.18.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
106
+ "llm.model.layers.18.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
107
+ "llm.model.layers.19.input_layernorm.weight": "model-00004-of-00007.safetensors",
108
+ "llm.model.layers.19.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
109
+ "llm.model.layers.19.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
110
+ "llm.model.layers.19.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
111
+ "llm.model.layers.19.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
112
+ "llm.model.layers.19.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
113
+ "llm.model.layers.19.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
114
+ "llm.model.layers.19.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
115
+ "llm.model.layers.19.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
116
+ "llm.model.layers.2.input_layernorm.weight": "model-00001-of-00007.safetensors",
117
+ "llm.model.layers.2.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
118
+ "llm.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
119
+ "llm.model.layers.2.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
120
+ "llm.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
121
+ "llm.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
122
+ "llm.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
123
+ "llm.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
124
+ "llm.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
125
+ "llm.model.layers.20.input_layernorm.weight": "model-00005-of-00007.safetensors",
126
+ "llm.model.layers.20.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
127
+ "llm.model.layers.20.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
128
+ "llm.model.layers.20.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
129
+ "llm.model.layers.20.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
130
+ "llm.model.layers.20.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
131
+ "llm.model.layers.20.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
132
+ "llm.model.layers.20.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
133
+ "llm.model.layers.20.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
134
+ "llm.model.layers.21.input_layernorm.weight": "model-00005-of-00007.safetensors",
135
+ "llm.model.layers.21.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
136
+ "llm.model.layers.21.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
137
+ "llm.model.layers.21.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
138
+ "llm.model.layers.21.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
139
+ "llm.model.layers.21.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
140
+ "llm.model.layers.21.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
141
+ "llm.model.layers.21.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
142
+ "llm.model.layers.21.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
143
+ "llm.model.layers.22.input_layernorm.weight": "model-00005-of-00007.safetensors",
144
+ "llm.model.layers.22.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
145
+ "llm.model.layers.22.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
146
+ "llm.model.layers.22.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
147
+ "llm.model.layers.22.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
148
+ "llm.model.layers.22.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
149
+ "llm.model.layers.22.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
150
+ "llm.model.layers.22.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
151
+ "llm.model.layers.22.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
152
+ "llm.model.layers.23.input_layernorm.weight": "model-00005-of-00007.safetensors",
153
+ "llm.model.layers.23.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
154
+ "llm.model.layers.23.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
155
+ "llm.model.layers.23.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
156
+ "llm.model.layers.23.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
157
+ "llm.model.layers.23.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
158
+ "llm.model.layers.23.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
159
+ "llm.model.layers.23.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
160
+ "llm.model.layers.23.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
161
+ "llm.model.layers.24.input_layernorm.weight": "model-00005-of-00007.safetensors",
162
+ "llm.model.layers.24.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
163
+ "llm.model.layers.24.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
164
+ "llm.model.layers.24.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
165
+ "llm.model.layers.24.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
166
+ "llm.model.layers.24.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
167
+ "llm.model.layers.24.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
168
+ "llm.model.layers.24.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
169
+ "llm.model.layers.24.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
170
+ "llm.model.layers.25.input_layernorm.weight": "model-00006-of-00007.safetensors",
171
+ "llm.model.layers.25.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
172
+ "llm.model.layers.25.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
173
+ "llm.model.layers.25.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
174
+ "llm.model.layers.25.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
175
+ "llm.model.layers.25.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
176
+ "llm.model.layers.25.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
177
+ "llm.model.layers.25.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
178
+ "llm.model.layers.25.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
179
+ "llm.model.layers.26.input_layernorm.weight": "model-00006-of-00007.safetensors",
180
+ "llm.model.layers.26.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
181
+ "llm.model.layers.26.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
182
+ "llm.model.layers.26.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
183
+ "llm.model.layers.26.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
184
+ "llm.model.layers.26.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
185
+ "llm.model.layers.26.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
186
+ "llm.model.layers.26.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
187
+ "llm.model.layers.26.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
188
+ "llm.model.layers.27.input_layernorm.weight": "model-00006-of-00007.safetensors",
189
+ "llm.model.layers.27.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
190
+ "llm.model.layers.27.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
191
+ "llm.model.layers.27.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
192
+ "llm.model.layers.27.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
193
+ "llm.model.layers.27.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
194
+ "llm.model.layers.27.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
195
+ "llm.model.layers.27.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
196
+ "llm.model.layers.27.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
197
+ "llm.model.layers.28.input_layernorm.weight": "model-00006-of-00007.safetensors",
198
+ "llm.model.layers.28.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
199
+ "llm.model.layers.28.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
200
+ "llm.model.layers.28.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
201
+ "llm.model.layers.28.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
202
+ "llm.model.layers.28.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
203
+ "llm.model.layers.28.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
204
+ "llm.model.layers.28.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
205
+ "llm.model.layers.28.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
206
+ "llm.model.layers.29.input_layernorm.weight": "model-00006-of-00007.safetensors",
207
+ "llm.model.layers.29.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
208
+ "llm.model.layers.29.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
209
+ "llm.model.layers.29.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
210
+ "llm.model.layers.29.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
211
+ "llm.model.layers.29.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
212
+ "llm.model.layers.29.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
213
+ "llm.model.layers.29.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
214
+ "llm.model.layers.29.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
215
+ "llm.model.layers.3.input_layernorm.weight": "model-00002-of-00007.safetensors",
216
+ "llm.model.layers.3.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
217
+ "llm.model.layers.3.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
218
+ "llm.model.layers.3.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
219
+ "llm.model.layers.3.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
220
+ "llm.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
221
+ "llm.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
222
+ "llm.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
223
+ "llm.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
224
+ "llm.model.layers.30.input_layernorm.weight": "model-00006-of-00007.safetensors",
225
+ "llm.model.layers.30.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
226
+ "llm.model.layers.30.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
227
+ "llm.model.layers.30.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
228
+ "llm.model.layers.30.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
229
+ "llm.model.layers.30.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
230
+ "llm.model.layers.30.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
231
+ "llm.model.layers.30.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
232
+ "llm.model.layers.30.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
233
+ "llm.model.layers.31.input_layernorm.weight": "model-00007-of-00007.safetensors",
234
+ "llm.model.layers.31.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
235
+ "llm.model.layers.31.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
236
+ "llm.model.layers.31.mlp.up_proj.weight": "model-00007-of-00007.safetensors",
237
+ "llm.model.layers.31.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
238
+ "llm.model.layers.31.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
239
+ "llm.model.layers.31.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
240
+ "llm.model.layers.31.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
241
+ "llm.model.layers.31.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
242
+ "llm.model.layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
243
+ "llm.model.layers.4.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
244
+ "llm.model.layers.4.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
245
+ "llm.model.layers.4.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
246
+ "llm.model.layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
247
+ "llm.model.layers.4.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
248
+ "llm.model.layers.4.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
249
+ "llm.model.layers.4.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
250
+ "llm.model.layers.4.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
251
+ "llm.model.layers.5.input_layernorm.weight": "model-00002-of-00007.safetensors",
252
+ "llm.model.layers.5.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
253
+ "llm.model.layers.5.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
254
+ "llm.model.layers.5.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
255
+ "llm.model.layers.5.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
256
+ "llm.model.layers.5.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
257
+ "llm.model.layers.5.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
258
+ "llm.model.layers.5.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
259
+ "llm.model.layers.5.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
260
+ "llm.model.layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
261
+ "llm.model.layers.6.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
262
+ "llm.model.layers.6.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
263
+ "llm.model.layers.6.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
264
+ "llm.model.layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
265
+ "llm.model.layers.6.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
266
+ "llm.model.layers.6.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
267
+ "llm.model.layers.6.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
268
+ "llm.model.layers.6.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
269
+ "llm.model.layers.7.input_layernorm.weight": "model-00002-of-00007.safetensors",
270
+ "llm.model.layers.7.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
271
+ "llm.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
272
+ "llm.model.layers.7.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
273
+ "llm.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
274
+ "llm.model.layers.7.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
275
+ "llm.model.layers.7.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
276
+ "llm.model.layers.7.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
277
+ "llm.model.layers.7.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
278
+ "llm.model.layers.8.input_layernorm.weight": "model-00003-of-00007.safetensors",
279
+ "llm.model.layers.8.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
280
+ "llm.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
281
+ "llm.model.layers.8.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
282
+ "llm.model.layers.8.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
283
+ "llm.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
284
+ "llm.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
285
+ "llm.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
286
+ "llm.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
287
+ "llm.model.layers.9.input_layernorm.weight": "model-00003-of-00007.safetensors",
288
+ "llm.model.layers.9.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
289
+ "llm.model.layers.9.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
290
+ "llm.model.layers.9.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
291
+ "llm.model.layers.9.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
292
+ "llm.model.layers.9.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
293
+ "llm.model.layers.9.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
294
+ "llm.model.layers.9.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
295
+ "llm.model.layers.9.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
296
+ "llm.model.norm.weight": "model-00007-of-00007.safetensors",
297
+ "resampler.attn.in_proj_bias": "model-00007-of-00007.safetensors",
298
+ "resampler.attn.in_proj_weight": "model-00007-of-00007.safetensors",
299
+ "resampler.attn.out_proj.bias": "model-00007-of-00007.safetensors",
300
+ "resampler.attn.out_proj.weight": "model-00007-of-00007.safetensors",
301
+ "resampler.kv_proj.weight": "model-00007-of-00007.safetensors",
302
+ "resampler.ln_kv.bias": "model-00007-of-00007.safetensors",
303
+ "resampler.ln_kv.weight": "model-00007-of-00007.safetensors",
304
+ "resampler.ln_post.bias": "model-00007-of-00007.safetensors",
305
+ "resampler.ln_post.weight": "model-00007-of-00007.safetensors",
306
+ "resampler.ln_q.bias": "model-00007-of-00007.safetensors",
307
+ "resampler.ln_q.weight": "model-00007-of-00007.safetensors",
308
+ "resampler.proj": "model-00007-of-00007.safetensors",
309
+ "resampler.query": "model-00007-of-00007.safetensors",
310
+ "vpm.embeddings.patch_embedding.bias": "model-00007-of-00007.safetensors",
311
+ "vpm.embeddings.patch_embedding.weight": "model-00007-of-00007.safetensors",
312
+ "vpm.embeddings.position_embedding.weight": "model-00007-of-00007.safetensors",
313
+ "vpm.encoder.layers.0.layer_norm1.bias": "model-00007-of-00007.safetensors",
314
+ "vpm.encoder.layers.0.layer_norm1.weight": "model-00007-of-00007.safetensors",
315
+ "vpm.encoder.layers.0.layer_norm2.bias": "model-00007-of-00007.safetensors",
316
+ "vpm.encoder.layers.0.layer_norm2.weight": "model-00007-of-00007.safetensors",
317
+ "vpm.encoder.layers.0.mlp.fc1.bias": "model-00007-of-00007.safetensors",
318
+ "vpm.encoder.layers.0.mlp.fc1.weight": "model-00007-of-00007.safetensors",
319
+ "vpm.encoder.layers.0.mlp.fc2.bias": "model-00007-of-00007.safetensors",
320
+ "vpm.encoder.layers.0.mlp.fc2.weight": "model-00007-of-00007.safetensors",
321
+ "vpm.encoder.layers.0.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
322
+ "vpm.encoder.layers.0.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
323
+ "vpm.encoder.layers.0.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
324
+ "vpm.encoder.layers.0.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
325
+ "vpm.encoder.layers.0.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
326
+ "vpm.encoder.layers.0.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
327
+ "vpm.encoder.layers.0.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
328
+ "vpm.encoder.layers.0.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
329
+ "vpm.encoder.layers.1.layer_norm1.bias": "model-00007-of-00007.safetensors",
330
+ "vpm.encoder.layers.1.layer_norm1.weight": "model-00007-of-00007.safetensors",
331
+ "vpm.encoder.layers.1.layer_norm2.bias": "model-00007-of-00007.safetensors",
332
+ "vpm.encoder.layers.1.layer_norm2.weight": "model-00007-of-00007.safetensors",
333
+ "vpm.encoder.layers.1.mlp.fc1.bias": "model-00007-of-00007.safetensors",
334
+ "vpm.encoder.layers.1.mlp.fc1.weight": "model-00007-of-00007.safetensors",
335
+ "vpm.encoder.layers.1.mlp.fc2.bias": "model-00007-of-00007.safetensors",
336
+ "vpm.encoder.layers.1.mlp.fc2.weight": "model-00007-of-00007.safetensors",
337
+ "vpm.encoder.layers.1.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
338
+ "vpm.encoder.layers.1.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
339
+ "vpm.encoder.layers.1.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
340
+ "vpm.encoder.layers.1.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
341
+ "vpm.encoder.layers.1.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
342
+ "vpm.encoder.layers.1.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
343
+ "vpm.encoder.layers.1.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
344
+ "vpm.encoder.layers.1.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
345
+ "vpm.encoder.layers.10.layer_norm1.bias": "model-00007-of-00007.safetensors",
346
+ "vpm.encoder.layers.10.layer_norm1.weight": "model-00007-of-00007.safetensors",
347
+ "vpm.encoder.layers.10.layer_norm2.bias": "model-00007-of-00007.safetensors",
348
+ "vpm.encoder.layers.10.layer_norm2.weight": "model-00007-of-00007.safetensors",
349
+ "vpm.encoder.layers.10.mlp.fc1.bias": "model-00007-of-00007.safetensors",
350
+ "vpm.encoder.layers.10.mlp.fc1.weight": "model-00007-of-00007.safetensors",
351
+ "vpm.encoder.layers.10.mlp.fc2.bias": "model-00007-of-00007.safetensors",
352
+ "vpm.encoder.layers.10.mlp.fc2.weight": "model-00007-of-00007.safetensors",
353
+ "vpm.encoder.layers.10.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
354
+ "vpm.encoder.layers.10.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
355
+ "vpm.encoder.layers.10.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
356
+ "vpm.encoder.layers.10.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
357
+ "vpm.encoder.layers.10.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
358
+ "vpm.encoder.layers.10.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
359
+ "vpm.encoder.layers.10.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
360
+ "vpm.encoder.layers.10.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
361
+ "vpm.encoder.layers.11.layer_norm1.bias": "model-00007-of-00007.safetensors",
362
+ "vpm.encoder.layers.11.layer_norm1.weight": "model-00007-of-00007.safetensors",
363
+ "vpm.encoder.layers.11.layer_norm2.bias": "model-00007-of-00007.safetensors",
364
+ "vpm.encoder.layers.11.layer_norm2.weight": "model-00007-of-00007.safetensors",
365
+ "vpm.encoder.layers.11.mlp.fc1.bias": "model-00007-of-00007.safetensors",
366
+ "vpm.encoder.layers.11.mlp.fc1.weight": "model-00007-of-00007.safetensors",
367
+ "vpm.encoder.layers.11.mlp.fc2.bias": "model-00007-of-00007.safetensors",
368
+ "vpm.encoder.layers.11.mlp.fc2.weight": "model-00007-of-00007.safetensors",
369
+ "vpm.encoder.layers.11.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
370
+ "vpm.encoder.layers.11.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
371
+ "vpm.encoder.layers.11.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
372
+ "vpm.encoder.layers.11.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
373
+ "vpm.encoder.layers.11.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
374
+ "vpm.encoder.layers.11.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
375
+ "vpm.encoder.layers.11.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
376
+ "vpm.encoder.layers.11.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
377
+ "vpm.encoder.layers.12.layer_norm1.bias": "model-00007-of-00007.safetensors",
378
+ "vpm.encoder.layers.12.layer_norm1.weight": "model-00007-of-00007.safetensors",
379
+ "vpm.encoder.layers.12.layer_norm2.bias": "model-00007-of-00007.safetensors",
380
+ "vpm.encoder.layers.12.layer_norm2.weight": "model-00007-of-00007.safetensors",
381
+ "vpm.encoder.layers.12.mlp.fc1.bias": "model-00007-of-00007.safetensors",
382
+ "vpm.encoder.layers.12.mlp.fc1.weight": "model-00007-of-00007.safetensors",
383
+ "vpm.encoder.layers.12.mlp.fc2.bias": "model-00007-of-00007.safetensors",
384
+ "vpm.encoder.layers.12.mlp.fc2.weight": "model-00007-of-00007.safetensors",
385
+ "vpm.encoder.layers.12.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
386
+ "vpm.encoder.layers.12.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
387
+ "vpm.encoder.layers.12.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
388
+ "vpm.encoder.layers.12.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
389
+ "vpm.encoder.layers.12.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
390
+ "vpm.encoder.layers.12.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
391
+ "vpm.encoder.layers.12.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
392
+ "vpm.encoder.layers.12.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
393
+ "vpm.encoder.layers.13.layer_norm1.bias": "model-00007-of-00007.safetensors",
394
+ "vpm.encoder.layers.13.layer_norm1.weight": "model-00007-of-00007.safetensors",
395
+ "vpm.encoder.layers.13.layer_norm2.bias": "model-00007-of-00007.safetensors",
396
+ "vpm.encoder.layers.13.layer_norm2.weight": "model-00007-of-00007.safetensors",
397
+ "vpm.encoder.layers.13.mlp.fc1.bias": "model-00007-of-00007.safetensors",
398
+ "vpm.encoder.layers.13.mlp.fc1.weight": "model-00007-of-00007.safetensors",
399
+ "vpm.encoder.layers.13.mlp.fc2.bias": "model-00007-of-00007.safetensors",
400
+ "vpm.encoder.layers.13.mlp.fc2.weight": "model-00007-of-00007.safetensors",
401
+ "vpm.encoder.layers.13.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
402
+ "vpm.encoder.layers.13.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
403
+ "vpm.encoder.layers.13.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
404
+ "vpm.encoder.layers.13.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
405
+ "vpm.encoder.layers.13.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
406
+ "vpm.encoder.layers.13.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
407
+ "vpm.encoder.layers.13.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
408
+ "vpm.encoder.layers.13.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
409
+ "vpm.encoder.layers.14.layer_norm1.bias": "model-00007-of-00007.safetensors",
410
+ "vpm.encoder.layers.14.layer_norm1.weight": "model-00007-of-00007.safetensors",
411
+ "vpm.encoder.layers.14.layer_norm2.bias": "model-00007-of-00007.safetensors",
412
+ "vpm.encoder.layers.14.layer_norm2.weight": "model-00007-of-00007.safetensors",
413
+ "vpm.encoder.layers.14.mlp.fc1.bias": "model-00007-of-00007.safetensors",
414
+ "vpm.encoder.layers.14.mlp.fc1.weight": "model-00007-of-00007.safetensors",
415
+ "vpm.encoder.layers.14.mlp.fc2.bias": "model-00007-of-00007.safetensors",
416
+ "vpm.encoder.layers.14.mlp.fc2.weight": "model-00007-of-00007.safetensors",
417
+ "vpm.encoder.layers.14.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
418
+ "vpm.encoder.layers.14.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
419
+ "vpm.encoder.layers.14.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
420
+ "vpm.encoder.layers.14.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
421
+ "vpm.encoder.layers.14.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
422
+ "vpm.encoder.layers.14.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
423
+ "vpm.encoder.layers.14.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
424
+ "vpm.encoder.layers.14.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
425
+ "vpm.encoder.layers.15.layer_norm1.bias": "model-00007-of-00007.safetensors",
426
+ "vpm.encoder.layers.15.layer_norm1.weight": "model-00007-of-00007.safetensors",
427
+ "vpm.encoder.layers.15.layer_norm2.bias": "model-00007-of-00007.safetensors",
428
+ "vpm.encoder.layers.15.layer_norm2.weight": "model-00007-of-00007.safetensors",
429
+ "vpm.encoder.layers.15.mlp.fc1.bias": "model-00007-of-00007.safetensors",
430
+ "vpm.encoder.layers.15.mlp.fc1.weight": "model-00007-of-00007.safetensors",
431
+ "vpm.encoder.layers.15.mlp.fc2.bias": "model-00007-of-00007.safetensors",
432
+ "vpm.encoder.layers.15.mlp.fc2.weight": "model-00007-of-00007.safetensors",
433
+ "vpm.encoder.layers.15.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
434
+ "vpm.encoder.layers.15.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
435
+ "vpm.encoder.layers.15.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
436
+ "vpm.encoder.layers.15.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
437
+ "vpm.encoder.layers.15.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
438
+ "vpm.encoder.layers.15.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
439
+ "vpm.encoder.layers.15.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
440
+ "vpm.encoder.layers.15.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
441
+ "vpm.encoder.layers.16.layer_norm1.bias": "model-00007-of-00007.safetensors",
442
+ "vpm.encoder.layers.16.layer_norm1.weight": "model-00007-of-00007.safetensors",
443
+ "vpm.encoder.layers.16.layer_norm2.bias": "model-00007-of-00007.safetensors",
444
+ "vpm.encoder.layers.16.layer_norm2.weight": "model-00007-of-00007.safetensors",
445
+ "vpm.encoder.layers.16.mlp.fc1.bias": "model-00007-of-00007.safetensors",
446
+ "vpm.encoder.layers.16.mlp.fc1.weight": "model-00007-of-00007.safetensors",
447
+ "vpm.encoder.layers.16.mlp.fc2.bias": "model-00007-of-00007.safetensors",
448
+ "vpm.encoder.layers.16.mlp.fc2.weight": "model-00007-of-00007.safetensors",
449
+ "vpm.encoder.layers.16.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
450
+ "vpm.encoder.layers.16.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
451
+ "vpm.encoder.layers.16.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
452
+ "vpm.encoder.layers.16.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
453
+ "vpm.encoder.layers.16.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
454
+ "vpm.encoder.layers.16.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
455
+ "vpm.encoder.layers.16.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
456
+ "vpm.encoder.layers.16.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
457
+ "vpm.encoder.layers.17.layer_norm1.bias": "model-00007-of-00007.safetensors",
458
+ "vpm.encoder.layers.17.layer_norm1.weight": "model-00007-of-00007.safetensors",
459
+ "vpm.encoder.layers.17.layer_norm2.bias": "model-00007-of-00007.safetensors",
460
+ "vpm.encoder.layers.17.layer_norm2.weight": "model-00007-of-00007.safetensors",
461
+ "vpm.encoder.layers.17.mlp.fc1.bias": "model-00007-of-00007.safetensors",
462
+ "vpm.encoder.layers.17.mlp.fc1.weight": "model-00007-of-00007.safetensors",
463
+ "vpm.encoder.layers.17.mlp.fc2.bias": "model-00007-of-00007.safetensors",
464
+ "vpm.encoder.layers.17.mlp.fc2.weight": "model-00007-of-00007.safetensors",
465
+ "vpm.encoder.layers.17.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
466
+ "vpm.encoder.layers.17.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
467
+ "vpm.encoder.layers.17.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
468
+ "vpm.encoder.layers.17.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
469
+ "vpm.encoder.layers.17.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
470
+ "vpm.encoder.layers.17.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
471
+ "vpm.encoder.layers.17.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
472
+ "vpm.encoder.layers.17.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
473
+ "vpm.encoder.layers.18.layer_norm1.bias": "model-00007-of-00007.safetensors",
474
+ "vpm.encoder.layers.18.layer_norm1.weight": "model-00007-of-00007.safetensors",
475
+ "vpm.encoder.layers.18.layer_norm2.bias": "model-00007-of-00007.safetensors",
476
+ "vpm.encoder.layers.18.layer_norm2.weight": "model-00007-of-00007.safetensors",
477
+ "vpm.encoder.layers.18.mlp.fc1.bias": "model-00007-of-00007.safetensors",
478
+ "vpm.encoder.layers.18.mlp.fc1.weight": "model-00007-of-00007.safetensors",
479
+ "vpm.encoder.layers.18.mlp.fc2.bias": "model-00007-of-00007.safetensors",
480
+ "vpm.encoder.layers.18.mlp.fc2.weight": "model-00007-of-00007.safetensors",
481
+ "vpm.encoder.layers.18.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
482
+ "vpm.encoder.layers.18.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
483
+ "vpm.encoder.layers.18.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
484
+ "vpm.encoder.layers.18.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
485
+ "vpm.encoder.layers.18.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
486
+ "vpm.encoder.layers.18.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
487
+ "vpm.encoder.layers.18.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
488
+ "vpm.encoder.layers.18.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
489
+ "vpm.encoder.layers.19.layer_norm1.bias": "model-00007-of-00007.safetensors",
490
+ "vpm.encoder.layers.19.layer_norm1.weight": "model-00007-of-00007.safetensors",
491
+ "vpm.encoder.layers.19.layer_norm2.bias": "model-00007-of-00007.safetensors",
492
+ "vpm.encoder.layers.19.layer_norm2.weight": "model-00007-of-00007.safetensors",
493
+ "vpm.encoder.layers.19.mlp.fc1.bias": "model-00007-of-00007.safetensors",
494
+ "vpm.encoder.layers.19.mlp.fc1.weight": "model-00007-of-00007.safetensors",
495
+ "vpm.encoder.layers.19.mlp.fc2.bias": "model-00007-of-00007.safetensors",
496
+ "vpm.encoder.layers.19.mlp.fc2.weight": "model-00007-of-00007.safetensors",
497
+ "vpm.encoder.layers.19.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
498
+ "vpm.encoder.layers.19.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
499
+ "vpm.encoder.layers.19.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
500
+ "vpm.encoder.layers.19.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
501
+ "vpm.encoder.layers.19.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
502
+ "vpm.encoder.layers.19.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
503
+ "vpm.encoder.layers.19.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
504
+ "vpm.encoder.layers.19.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
505
+ "vpm.encoder.layers.2.layer_norm1.bias": "model-00007-of-00007.safetensors",
506
+ "vpm.encoder.layers.2.layer_norm1.weight": "model-00007-of-00007.safetensors",
507
+ "vpm.encoder.layers.2.layer_norm2.bias": "model-00007-of-00007.safetensors",
508
+ "vpm.encoder.layers.2.layer_norm2.weight": "model-00007-of-00007.safetensors",
509
+ "vpm.encoder.layers.2.mlp.fc1.bias": "model-00007-of-00007.safetensors",
510
+ "vpm.encoder.layers.2.mlp.fc1.weight": "model-00007-of-00007.safetensors",
511
+ "vpm.encoder.layers.2.mlp.fc2.bias": "model-00007-of-00007.safetensors",
512
+ "vpm.encoder.layers.2.mlp.fc2.weight": "model-00007-of-00007.safetensors",
513
+ "vpm.encoder.layers.2.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
514
+ "vpm.encoder.layers.2.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
515
+ "vpm.encoder.layers.2.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
516
+ "vpm.encoder.layers.2.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
517
+ "vpm.encoder.layers.2.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
518
+ "vpm.encoder.layers.2.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
519
+ "vpm.encoder.layers.2.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
520
+ "vpm.encoder.layers.2.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
521
+ "vpm.encoder.layers.20.layer_norm1.bias": "model-00007-of-00007.safetensors",
522
+ "vpm.encoder.layers.20.layer_norm1.weight": "model-00007-of-00007.safetensors",
523
+ "vpm.encoder.layers.20.layer_norm2.bias": "model-00007-of-00007.safetensors",
524
+ "vpm.encoder.layers.20.layer_norm2.weight": "model-00007-of-00007.safetensors",
525
+ "vpm.encoder.layers.20.mlp.fc1.bias": "model-00007-of-00007.safetensors",
526
+ "vpm.encoder.layers.20.mlp.fc1.weight": "model-00007-of-00007.safetensors",
527
+ "vpm.encoder.layers.20.mlp.fc2.bias": "model-00007-of-00007.safetensors",
528
+ "vpm.encoder.layers.20.mlp.fc2.weight": "model-00007-of-00007.safetensors",
529
+ "vpm.encoder.layers.20.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
530
+ "vpm.encoder.layers.20.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
531
+ "vpm.encoder.layers.20.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
532
+ "vpm.encoder.layers.20.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
533
+ "vpm.encoder.layers.20.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
534
+ "vpm.encoder.layers.20.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
535
+ "vpm.encoder.layers.20.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
536
+ "vpm.encoder.layers.20.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
537
+ "vpm.encoder.layers.21.layer_norm1.bias": "model-00007-of-00007.safetensors",
538
+ "vpm.encoder.layers.21.layer_norm1.weight": "model-00007-of-00007.safetensors",
539
+ "vpm.encoder.layers.21.layer_norm2.bias": "model-00007-of-00007.safetensors",
540
+ "vpm.encoder.layers.21.layer_norm2.weight": "model-00007-of-00007.safetensors",
541
+ "vpm.encoder.layers.21.mlp.fc1.bias": "model-00007-of-00007.safetensors",
542
+ "vpm.encoder.layers.21.mlp.fc1.weight": "model-00007-of-00007.safetensors",
543
+ "vpm.encoder.layers.21.mlp.fc2.bias": "model-00007-of-00007.safetensors",
544
+ "vpm.encoder.layers.21.mlp.fc2.weight": "model-00007-of-00007.safetensors",
545
+ "vpm.encoder.layers.21.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
546
+ "vpm.encoder.layers.21.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
547
+ "vpm.encoder.layers.21.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
548
+ "vpm.encoder.layers.21.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
549
+ "vpm.encoder.layers.21.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
550
+ "vpm.encoder.layers.21.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
551
+ "vpm.encoder.layers.21.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
552
+ "vpm.encoder.layers.21.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
553
+ "vpm.encoder.layers.22.layer_norm1.bias": "model-00007-of-00007.safetensors",
554
+ "vpm.encoder.layers.22.layer_norm1.weight": "model-00007-of-00007.safetensors",
555
+ "vpm.encoder.layers.22.layer_norm2.bias": "model-00007-of-00007.safetensors",
556
+ "vpm.encoder.layers.22.layer_norm2.weight": "model-00007-of-00007.safetensors",
557
+ "vpm.encoder.layers.22.mlp.fc1.bias": "model-00007-of-00007.safetensors",
558
+ "vpm.encoder.layers.22.mlp.fc1.weight": "model-00007-of-00007.safetensors",
559
+ "vpm.encoder.layers.22.mlp.fc2.bias": "model-00007-of-00007.safetensors",
560
+ "vpm.encoder.layers.22.mlp.fc2.weight": "model-00007-of-00007.safetensors",
561
+ "vpm.encoder.layers.22.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
562
+ "vpm.encoder.layers.22.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
563
+ "vpm.encoder.layers.22.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
564
+ "vpm.encoder.layers.22.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
565
+ "vpm.encoder.layers.22.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
566
+ "vpm.encoder.layers.22.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
567
+ "vpm.encoder.layers.22.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
568
+ "vpm.encoder.layers.22.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
569
+ "vpm.encoder.layers.23.layer_norm1.bias": "model-00007-of-00007.safetensors",
570
+ "vpm.encoder.layers.23.layer_norm1.weight": "model-00007-of-00007.safetensors",
571
+ "vpm.encoder.layers.23.layer_norm2.bias": "model-00007-of-00007.safetensors",
572
+ "vpm.encoder.layers.23.layer_norm2.weight": "model-00007-of-00007.safetensors",
573
+ "vpm.encoder.layers.23.mlp.fc1.bias": "model-00007-of-00007.safetensors",
574
+ "vpm.encoder.layers.23.mlp.fc1.weight": "model-00007-of-00007.safetensors",
575
+ "vpm.encoder.layers.23.mlp.fc2.bias": "model-00007-of-00007.safetensors",
576
+ "vpm.encoder.layers.23.mlp.fc2.weight": "model-00007-of-00007.safetensors",
577
+ "vpm.encoder.layers.23.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
578
+ "vpm.encoder.layers.23.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
579
+ "vpm.encoder.layers.23.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
580
+ "vpm.encoder.layers.23.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
581
+ "vpm.encoder.layers.23.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
582
+ "vpm.encoder.layers.23.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
583
+ "vpm.encoder.layers.23.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
584
+ "vpm.encoder.layers.23.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
585
+ "vpm.encoder.layers.24.layer_norm1.bias": "model-00007-of-00007.safetensors",
586
+ "vpm.encoder.layers.24.layer_norm1.weight": "model-00007-of-00007.safetensors",
587
+ "vpm.encoder.layers.24.layer_norm2.bias": "model-00007-of-00007.safetensors",
588
+ "vpm.encoder.layers.24.layer_norm2.weight": "model-00007-of-00007.safetensors",
589
+ "vpm.encoder.layers.24.mlp.fc1.bias": "model-00007-of-00007.safetensors",
590
+ "vpm.encoder.layers.24.mlp.fc1.weight": "model-00007-of-00007.safetensors",
591
+ "vpm.encoder.layers.24.mlp.fc2.bias": "model-00007-of-00007.safetensors",
592
+ "vpm.encoder.layers.24.mlp.fc2.weight": "model-00007-of-00007.safetensors",
593
+ "vpm.encoder.layers.24.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
594
+ "vpm.encoder.layers.24.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
595
+ "vpm.encoder.layers.24.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
596
+ "vpm.encoder.layers.24.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
597
+ "vpm.encoder.layers.24.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
598
+ "vpm.encoder.layers.24.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
599
+ "vpm.encoder.layers.24.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
600
+ "vpm.encoder.layers.24.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
601
+ "vpm.encoder.layers.25.layer_norm1.bias": "model-00007-of-00007.safetensors",
602
+ "vpm.encoder.layers.25.layer_norm1.weight": "model-00007-of-00007.safetensors",
603
+ "vpm.encoder.layers.25.layer_norm2.bias": "model-00007-of-00007.safetensors",
604
+ "vpm.encoder.layers.25.layer_norm2.weight": "model-00007-of-00007.safetensors",
605
+ "vpm.encoder.layers.25.mlp.fc1.bias": "model-00007-of-00007.safetensors",
606
+ "vpm.encoder.layers.25.mlp.fc1.weight": "model-00007-of-00007.safetensors",
607
+ "vpm.encoder.layers.25.mlp.fc2.bias": "model-00007-of-00007.safetensors",
608
+ "vpm.encoder.layers.25.mlp.fc2.weight": "model-00007-of-00007.safetensors",
609
+ "vpm.encoder.layers.25.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
610
+ "vpm.encoder.layers.25.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
611
+ "vpm.encoder.layers.25.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
612
+ "vpm.encoder.layers.25.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
613
+ "vpm.encoder.layers.25.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
614
+ "vpm.encoder.layers.25.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
615
+ "vpm.encoder.layers.25.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
616
+ "vpm.encoder.layers.25.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
617
+ "vpm.encoder.layers.26.layer_norm1.bias": "model-00007-of-00007.safetensors",
618
+ "vpm.encoder.layers.26.layer_norm1.weight": "model-00007-of-00007.safetensors",
619
+ "vpm.encoder.layers.26.layer_norm2.bias": "model-00007-of-00007.safetensors",
620
+ "vpm.encoder.layers.26.layer_norm2.weight": "model-00007-of-00007.safetensors",
621
+ "vpm.encoder.layers.26.mlp.fc1.bias": "model-00007-of-00007.safetensors",
622
+ "vpm.encoder.layers.26.mlp.fc1.weight": "model-00007-of-00007.safetensors",
623
+ "vpm.encoder.layers.26.mlp.fc2.bias": "model-00007-of-00007.safetensors",
624
+ "vpm.encoder.layers.26.mlp.fc2.weight": "model-00007-of-00007.safetensors",
625
+ "vpm.encoder.layers.26.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
626
+ "vpm.encoder.layers.26.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
627
+ "vpm.encoder.layers.26.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
628
+ "vpm.encoder.layers.26.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
629
+ "vpm.encoder.layers.26.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
630
+ "vpm.encoder.layers.26.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
631
+ "vpm.encoder.layers.26.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
632
+ "vpm.encoder.layers.26.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
633
+ "vpm.encoder.layers.3.layer_norm1.bias": "model-00007-of-00007.safetensors",
634
+ "vpm.encoder.layers.3.layer_norm1.weight": "model-00007-of-00007.safetensors",
635
+ "vpm.encoder.layers.3.layer_norm2.bias": "model-00007-of-00007.safetensors",
636
+ "vpm.encoder.layers.3.layer_norm2.weight": "model-00007-of-00007.safetensors",
637
+ "vpm.encoder.layers.3.mlp.fc1.bias": "model-00007-of-00007.safetensors",
638
+ "vpm.encoder.layers.3.mlp.fc1.weight": "model-00007-of-00007.safetensors",
639
+ "vpm.encoder.layers.3.mlp.fc2.bias": "model-00007-of-00007.safetensors",
640
+ "vpm.encoder.layers.3.mlp.fc2.weight": "model-00007-of-00007.safetensors",
641
+ "vpm.encoder.layers.3.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
642
+ "vpm.encoder.layers.3.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
643
+ "vpm.encoder.layers.3.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
644
+ "vpm.encoder.layers.3.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
645
+ "vpm.encoder.layers.3.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
646
+ "vpm.encoder.layers.3.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
647
+ "vpm.encoder.layers.3.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
648
+ "vpm.encoder.layers.3.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
649
+ "vpm.encoder.layers.4.layer_norm1.bias": "model-00007-of-00007.safetensors",
650
+ "vpm.encoder.layers.4.layer_norm1.weight": "model-00007-of-00007.safetensors",
651
+ "vpm.encoder.layers.4.layer_norm2.bias": "model-00007-of-00007.safetensors",
652
+ "vpm.encoder.layers.4.layer_norm2.weight": "model-00007-of-00007.safetensors",
653
+ "vpm.encoder.layers.4.mlp.fc1.bias": "model-00007-of-00007.safetensors",
654
+ "vpm.encoder.layers.4.mlp.fc1.weight": "model-00007-of-00007.safetensors",
655
+ "vpm.encoder.layers.4.mlp.fc2.bias": "model-00007-of-00007.safetensors",
656
+ "vpm.encoder.layers.4.mlp.fc2.weight": "model-00007-of-00007.safetensors",
657
+ "vpm.encoder.layers.4.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
658
+ "vpm.encoder.layers.4.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
659
+ "vpm.encoder.layers.4.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
660
+ "vpm.encoder.layers.4.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
661
+ "vpm.encoder.layers.4.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
662
+ "vpm.encoder.layers.4.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
663
+ "vpm.encoder.layers.4.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
664
+ "vpm.encoder.layers.4.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
665
+ "vpm.encoder.layers.5.layer_norm1.bias": "model-00007-of-00007.safetensors",
666
+ "vpm.encoder.layers.5.layer_norm1.weight": "model-00007-of-00007.safetensors",
667
+ "vpm.encoder.layers.5.layer_norm2.bias": "model-00007-of-00007.safetensors",
668
+ "vpm.encoder.layers.5.layer_norm2.weight": "model-00007-of-00007.safetensors",
669
+ "vpm.encoder.layers.5.mlp.fc1.bias": "model-00007-of-00007.safetensors",
670
+ "vpm.encoder.layers.5.mlp.fc1.weight": "model-00007-of-00007.safetensors",
671
+ "vpm.encoder.layers.5.mlp.fc2.bias": "model-00007-of-00007.safetensors",
672
+ "vpm.encoder.layers.5.mlp.fc2.weight": "model-00007-of-00007.safetensors",
673
+ "vpm.encoder.layers.5.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
674
+ "vpm.encoder.layers.5.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
675
+ "vpm.encoder.layers.5.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
676
+ "vpm.encoder.layers.5.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
677
+ "vpm.encoder.layers.5.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
678
+ "vpm.encoder.layers.5.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
679
+ "vpm.encoder.layers.5.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
680
+ "vpm.encoder.layers.5.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
681
+ "vpm.encoder.layers.6.layer_norm1.bias": "model-00007-of-00007.safetensors",
682
+ "vpm.encoder.layers.6.layer_norm1.weight": "model-00007-of-00007.safetensors",
683
+ "vpm.encoder.layers.6.layer_norm2.bias": "model-00007-of-00007.safetensors",
684
+ "vpm.encoder.layers.6.layer_norm2.weight": "model-00007-of-00007.safetensors",
685
+ "vpm.encoder.layers.6.mlp.fc1.bias": "model-00007-of-00007.safetensors",
686
+ "vpm.encoder.layers.6.mlp.fc1.weight": "model-00007-of-00007.safetensors",
687
+ "vpm.encoder.layers.6.mlp.fc2.bias": "model-00007-of-00007.safetensors",
688
+ "vpm.encoder.layers.6.mlp.fc2.weight": "model-00007-of-00007.safetensors",
689
+ "vpm.encoder.layers.6.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
690
+ "vpm.encoder.layers.6.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
691
+ "vpm.encoder.layers.6.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
692
+ "vpm.encoder.layers.6.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
693
+ "vpm.encoder.layers.6.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
694
+ "vpm.encoder.layers.6.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
695
+ "vpm.encoder.layers.6.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
696
+ "vpm.encoder.layers.6.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
697
+ "vpm.encoder.layers.7.layer_norm1.bias": "model-00007-of-00007.safetensors",
698
+ "vpm.encoder.layers.7.layer_norm1.weight": "model-00007-of-00007.safetensors",
699
+ "vpm.encoder.layers.7.layer_norm2.bias": "model-00007-of-00007.safetensors",
700
+ "vpm.encoder.layers.7.layer_norm2.weight": "model-00007-of-00007.safetensors",
701
+ "vpm.encoder.layers.7.mlp.fc1.bias": "model-00007-of-00007.safetensors",
702
+ "vpm.encoder.layers.7.mlp.fc1.weight": "model-00007-of-00007.safetensors",
703
+ "vpm.encoder.layers.7.mlp.fc2.bias": "model-00007-of-00007.safetensors",
704
+ "vpm.encoder.layers.7.mlp.fc2.weight": "model-00007-of-00007.safetensors",
705
+ "vpm.encoder.layers.7.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
706
+ "vpm.encoder.layers.7.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
707
+ "vpm.encoder.layers.7.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
708
+ "vpm.encoder.layers.7.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
709
+ "vpm.encoder.layers.7.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
710
+ "vpm.encoder.layers.7.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
711
+ "vpm.encoder.layers.7.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
712
+ "vpm.encoder.layers.7.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
713
+ "vpm.encoder.layers.8.layer_norm1.bias": "model-00007-of-00007.safetensors",
714
+ "vpm.encoder.layers.8.layer_norm1.weight": "model-00007-of-00007.safetensors",
715
+ "vpm.encoder.layers.8.layer_norm2.bias": "model-00007-of-00007.safetensors",
716
+ "vpm.encoder.layers.8.layer_norm2.weight": "model-00007-of-00007.safetensors",
717
+ "vpm.encoder.layers.8.mlp.fc1.bias": "model-00007-of-00007.safetensors",
718
+ "vpm.encoder.layers.8.mlp.fc1.weight": "model-00007-of-00007.safetensors",
719
+ "vpm.encoder.layers.8.mlp.fc2.bias": "model-00007-of-00007.safetensors",
720
+ "vpm.encoder.layers.8.mlp.fc2.weight": "model-00007-of-00007.safetensors",
721
+ "vpm.encoder.layers.8.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
722
+ "vpm.encoder.layers.8.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
723
+ "vpm.encoder.layers.8.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
724
+ "vpm.encoder.layers.8.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
725
+ "vpm.encoder.layers.8.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
726
+ "vpm.encoder.layers.8.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
727
+ "vpm.encoder.layers.8.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
728
+ "vpm.encoder.layers.8.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
729
+ "vpm.encoder.layers.9.layer_norm1.bias": "model-00007-of-00007.safetensors",
730
+ "vpm.encoder.layers.9.layer_norm1.weight": "model-00007-of-00007.safetensors",
731
+ "vpm.encoder.layers.9.layer_norm2.bias": "model-00007-of-00007.safetensors",
732
+ "vpm.encoder.layers.9.layer_norm2.weight": "model-00007-of-00007.safetensors",
733
+ "vpm.encoder.layers.9.mlp.fc1.bias": "model-00007-of-00007.safetensors",
734
+ "vpm.encoder.layers.9.mlp.fc1.weight": "model-00007-of-00007.safetensors",
735
+ "vpm.encoder.layers.9.mlp.fc2.bias": "model-00007-of-00007.safetensors",
736
+ "vpm.encoder.layers.9.mlp.fc2.weight": "model-00007-of-00007.safetensors",
737
+ "vpm.encoder.layers.9.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
738
+ "vpm.encoder.layers.9.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
739
+ "vpm.encoder.layers.9.self_attn.out_proj.bias": "model-00007-of-00007.safetensors",
740
+ "vpm.encoder.layers.9.self_attn.out_proj.weight": "model-00007-of-00007.safetensors",
741
+ "vpm.encoder.layers.9.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
742
+ "vpm.encoder.layers.9.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
743
+ "vpm.encoder.layers.9.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
744
+ "vpm.encoder.layers.9.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
745
+ "vpm.post_layernorm.bias": "model-00007-of-00007.safetensors",
746
+ "vpm.post_layernorm.weight": "model-00007-of-00007.safetensors"
747
+ }
748
+ }
modeling_minicpmv.py ADDED
@@ -0,0 +1,702 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional
3
+ import json
4
+ import torch
5
+ import torchvision
6
+ from threading import Thread
7
+ from copy import deepcopy
8
+ from PIL import Image
9
+ from torchvision import transforms
10
+ from transformers import LlamaTokenizer, LlamaPreTrainedModel, LlamaForCausalLM, AutoModel, PreTrainedTokenizerFast, TextIteratorStreamer
11
+ from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
12
+
13
+ from .configuration_minicpm import MiniCPMVConfig
14
+ from .resampler import Resampler
15
+
16
+ IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5) # timm.data.IMAGENET_INCEPTION_MEAN
17
+ IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5) # timm.data.IMAGENET_INCEPTION_STD
18
+
19
+ class MiniCPMVPreTrainedModel(LlamaPreTrainedModel):
20
+ config_class = MiniCPMVConfig
21
+
22
+
23
+ class MiniCPMV(MiniCPMVPreTrainedModel):
24
+ def __init__(self, config):
25
+ super().__init__(config)
26
+
27
+ self.llm = LlamaForCausalLM(config)
28
+ self.vpm = self.init_vision_module()
29
+ self.vision_dim = self.vpm.embed_dim
30
+ self.embed_dim = self.llm.config.hidden_size
31
+ self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
32
+ self.transform = self.init_transform()
33
+
34
+ def init_vision_module(self):
35
+ # same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
36
+ model = Idefics2VisionTransformer(self.config.vision_config)
37
+ if self.config.drop_vision_last_layer:
38
+ model.encoder.layers = model.encoder.layers[:-1]
39
+
40
+ setattr(model, 'embed_dim', model.embeddings.embed_dim)
41
+ setattr(model, 'patch_size', model.embeddings.patch_size)
42
+
43
+ return model
44
+
45
+ def init_resampler(self, embed_dim, vision_dim):
46
+ return Resampler(
47
+ num_queries=self.config.query_num,
48
+ embed_dim=embed_dim,
49
+ num_heads=embed_dim // 128,
50
+ kv_dim=vision_dim,
51
+ adaptive=True
52
+ )
53
+
54
+ def init_transform(self):
55
+ return transforms.Compose(
56
+ [
57
+ transforms.ToTensor(),
58
+ transforms.Normalize(
59
+ mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD
60
+ ),
61
+ ]
62
+ )
63
+
64
+ def get_input_embeddings(self):
65
+ return self.llm.get_input_embeddings()
66
+
67
+ def set_input_embeddings(self, value):
68
+ self.llm.embed_tokens = value
69
+
70
+ def get_vllm_embedding(self, data):
71
+ if 'vision_hidden_states' not in data:
72
+ dtype = self.vpm.embeddings.position_embedding.weight.dtype
73
+ device = self.vpm.embeddings.position_embedding.weight.device
74
+ tgt_sizes = data['tgt_sizes']
75
+ pixel_values_list = data['pixel_values']
76
+ vision_hidden_states = []
77
+ all_pixel_values = []
78
+ img_cnt = []
79
+ for pixel_values in pixel_values_list:
80
+ img_cnt.append(len(pixel_values))
81
+ all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
82
+
83
+ # exist image
84
+ if all_pixel_values:
85
+ tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
86
+
87
+ if self.config.batch_vision_input:
88
+ max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])
89
+
90
+ all_pixel_values = torch.nn.utils.rnn.pad_sequence(all_pixel_values, batch_first=True,
91
+ padding_value=0.0)
92
+ B, L, _ = all_pixel_values.shape
93
+ all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
94
+
95
+ patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
96
+ for i in range(B):
97
+ patch_attn_mask[i, :tgt_sizes[i][0] * tgt_sizes[i][1]] = True
98
+
99
+ vision_embedding = self.vpm(all_pixel_values.type(dtype), patch_attention_mask=patch_attn_mask).last_hidden_state
100
+ vision_embedding = self.resampler(vision_embedding, tgt_sizes)
101
+ else:
102
+ # get vision_embedding foreach
103
+ vision_embedding = []
104
+ for single_tgt_size, single_pixel_values in zip(tgt_sizes, all_pixel_values):
105
+ single_pixel_values = single_pixel_values.unsqueeze(0)
106
+ B, L, _ = single_pixel_values.shape
107
+ single_pixel_values = single_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
108
+ single_vision_embedding = self.vpm(single_pixel_values.type(dtype)).last_hidden_state
109
+ single_vision_embedding = self.resampler(single_vision_embedding, single_tgt_size.unsqueeze(0))
110
+ vision_embedding.append(single_vision_embedding)
111
+ vision_embedding = torch.vstack(vision_embedding)
112
+
113
+ start = 0
114
+ for pixel_values in pixel_values_list:
115
+ img_cnt = len(pixel_values)
116
+ if img_cnt > 0:
117
+ vision_hidden_states.append(vision_embedding[start: start + img_cnt])
118
+ start += img_cnt
119
+ else:
120
+ vision_hidden_states.append([])
121
+ else: # no image
122
+ if self.training:
123
+ dummy_image = torch.zeros(
124
+ (1, 3, 224, 224),
125
+ device=device, dtype=dtype
126
+ )
127
+ tgt_sizes = torch.Tensor([[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]).type(torch.int32)
128
+ dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
129
+ else:
130
+ dummy_feature = []
131
+ for _ in range(len(pixel_values_list)):
132
+ vision_hidden_states.append(dummy_feature)
133
+
134
+ else:
135
+ vision_hidden_states = data['vision_hidden_states']
136
+
137
+ if hasattr(self.llm.config, 'scale_emb'):
138
+ vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb
139
+ else:
140
+ vllm_embedding = self.llm.model.embed_tokens(data['input_ids'])
141
+
142
+ vision_hidden_states = [i.type(vllm_embedding.dtype) if isinstance(
143
+ i, torch.Tensor) else i for i in vision_hidden_states]
144
+
145
+ bs = len(data['input_ids'])
146
+ for i in range(bs):
147
+ cur_vs_hs = vision_hidden_states[i]
148
+ if len(cur_vs_hs) > 0:
149
+ cur_vllm_emb = vllm_embedding[i]
150
+ cur_image_bound = data['image_bound'][i]
151
+ if len(cur_image_bound) > 0:
152
+ image_indices = torch.stack(
153
+ [torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
154
+ ).to(vllm_embedding.device)
155
+
156
+ cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
157
+ cur_vs_hs.view(-1, cur_vs_hs.shape[-1]))
158
+ elif self.training:
159
+ cur_vllm_emb += cur_vs_hs[0].mean() * 0
160
+
161
+ return vllm_embedding, vision_hidden_states
162
+
163
+ def forward(self, data, **kwargs):
164
+ vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
165
+ position_ids = data["position_ids"]
166
+ if position_ids.dtype != torch.int64:
167
+ position_ids = position_ids.long()
168
+
169
+ return self.llm(
170
+ input_ids=None,
171
+ position_ids=position_ids,
172
+ inputs_embeds=vllm_embedding,
173
+ **kwargs
174
+ )
175
+
176
+ def _convert_to_tensors(
177
+ self, tokenizer, input_ids, max_inp_length: Optional[int] = None
178
+ ):
179
+ if max_inp_length is not None:
180
+ input_ids = input_ids[:max_inp_length]
181
+ input_ids = torch.tensor(input_ids, dtype=torch.int32)
182
+
183
+ image_start_tokens = torch.where(input_ids == tokenizer.im_start_id)[0]
184
+ # 跳过 im_start
185
+ image_start_tokens += 1
186
+ image_end_tokens = torch.where(input_ids == tokenizer.im_end_id)[0]
187
+ valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
188
+ image_bound = torch.hstack(
189
+ [
190
+ image_start_tokens[:valid_image_nums].unsqueeze(-1),
191
+ image_end_tokens[:valid_image_nums].unsqueeze(-1),
192
+ ]
193
+ )
194
+
195
+ model_input = {}
196
+ model_input["input_ids"] = input_ids.unsqueeze(0).to(self.device)
197
+ model_input["image_bound"] = image_bound
198
+
199
+ return model_input
200
+
201
+ def _process_list(
202
+ self, tokenizer, input_id_list, max_inp_length: Optional[int] = None
203
+ ):
204
+ pad_keys = ["input_ids"]
205
+ input_tensors = []
206
+ for input_ids in input_id_list:
207
+ input_tensors.append(
208
+ self._convert_to_tensors(tokenizer, input_ids, max_inp_length)
209
+ )
210
+ padded = {}
211
+ for key in pad_keys:
212
+ padded[key] = pad(input_tensors, key, padding_side="left").to(self.device)
213
+ padded["image_bound"] = [i["image_bound"] for i in input_tensors]
214
+ return padded
215
+
216
+ def _decode(self, inputs_embeds, tokenizer, **kwargs):
217
+ terminators = [
218
+ tokenizer.eos_token_id,
219
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
220
+ ]
221
+ output = self.llm.generate(
222
+ inputs_embeds=inputs_embeds,
223
+ pad_token_id=0,
224
+ eos_token_id=terminators,
225
+ **kwargs
226
+ )
227
+ return self._decode_text(output, tokenizer)
228
+
229
+ def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
230
+ terminators = [
231
+ tokenizer.eos_token_id,
232
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
233
+ ]
234
+ streamer = TextIteratorStreamer(tokenizer=tokenizer)
235
+ generation_kwargs = {
236
+ 'inputs_embeds': inputs_embeds,
237
+ 'pad_token_id': 0,
238
+ 'eos_token_id': terminators,
239
+ 'streamer': streamer
240
+ }
241
+ generation_kwargs.update(kwargs)
242
+
243
+ thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
244
+ thread.start()
245
+
246
+ return streamer
247
+
248
+ def _decode_text(self, result_ids, tokenizer):
249
+ result_text = []
250
+ for result in result_ids:
251
+ result = result[result != 0]
252
+ if result[0] == tokenizer.bos_id:
253
+ result = result[1:]
254
+ if result[-1] == tokenizer.eos_id or result[-1] == tokenizer.eot_id:
255
+ result = result[:-1]
256
+ result_text.append(tokenizer.decode(result).strip())
257
+ return result_text
258
+
259
+ def slice_image(self, image):
260
+ return slice_image(
261
+ image,
262
+ self.config.slice_config.max_slice_nums,
263
+ self.config.slice_config.scale_resolution,
264
+ self.config.slice_config.patch_size,
265
+ )
266
+
267
+ def get_slice_image_placeholder(self, image, tokenizer):
268
+ image_placeholder = (
269
+ tokenizer.im_start
270
+ + tokenizer.unk_token * self.config.query_num
271
+ + tokenizer.im_end
272
+ )
273
+
274
+ slice_images = []
275
+
276
+ source_image, patches, best_grid = slice_image(
277
+ image,
278
+ self.config.slice_config.max_slice_nums,
279
+ self.config.slice_config.scale_resolution,
280
+ self.config.slice_config.patch_size,
281
+ )
282
+
283
+ slice_images.append(source_image)
284
+ final_placeholder = image_placeholder
285
+
286
+ if len(patches) > 0:
287
+ for i in range(len(patches)):
288
+ for j in range(len(patches[0])):
289
+ slice_images.append(patches[i][j])
290
+
291
+ final_placeholder += get_grid_placeholder(
292
+ tokenizer, best_grid, self.config.query_num
293
+ )
294
+
295
+ return slice_images, final_placeholder
296
+
297
+ def reshape_by_patch(self, image_tensor):
298
+ """
299
+ :param image_tensor: shape [3, H, W]
300
+ :param patch_size:
301
+ :return: [3, patch_size, HW/patch_size]
302
+ """
303
+ patch_size = self.config.patch_size
304
+ patches = torch.nn.functional.unfold(
305
+ image_tensor,
306
+ (patch_size, patch_size),
307
+ stride=(patch_size, patch_size)
308
+ )
309
+
310
+ patches = patches.reshape(image_tensor.size(0), patch_size, patch_size, -1)
311
+ patches = patches.permute(0, 1, 3, 2).reshape(image_tensor.size(0), patch_size, -1)
312
+ return patches
313
+
314
+ def generate(
315
+ self,
316
+ input_id_list=None,
317
+ img_list=None,
318
+ tgt_sizes=None,
319
+ tokenizer=None,
320
+ max_inp_length: Optional[int] = None,
321
+ vision_hidden_states=None,
322
+ return_vision_hidden_states=False,
323
+ stream=False,
324
+ **kwargs
325
+ ):
326
+
327
+ assert input_id_list is not None
328
+ bs = len(input_id_list)
329
+ if img_list == None:
330
+ img_list = [[] for i in range(bs)]
331
+ assert bs == len(img_list)
332
+
333
+ model_inputs = self._process_list(tokenizer, input_id_list, max_inp_length)
334
+
335
+ if vision_hidden_states is None:
336
+ pixel_values = []
337
+ for i in range(bs):
338
+ img_inps = []
339
+ for img in img_list[i]:
340
+ img_inps.append(img.to(self.device))
341
+ if img_inps:
342
+ pixel_values.append(img_inps)
343
+ else:
344
+ pixel_values.append([])
345
+ model_inputs["pixel_values"] = pixel_values
346
+ model_inputs['tgt_sizes'] = tgt_sizes
347
+ else:
348
+ model_inputs["vision_hidden_states"] = vision_hidden_states
349
+
350
+ with torch.inference_mode():
351
+ (
352
+ model_inputs["inputs_embeds"],
353
+ vision_hidden_states,
354
+ ) = self.get_vllm_embedding(model_inputs)
355
+
356
+ if stream:
357
+ result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs)
358
+ else:
359
+ result = self._decode(model_inputs["inputs_embeds"], tokenizer, **kwargs)
360
+
361
+ if return_vision_hidden_states:
362
+ return result, vision_hidden_states
363
+
364
+ return result
365
+
366
+ def chat(
367
+ self,
368
+ image,
369
+ msgs,
370
+ tokenizer,
371
+ vision_hidden_states=None,
372
+ max_new_tokens=1024,
373
+ sampling=True,
374
+ max_inp_length=2048,
375
+ system_prompt='',
376
+ stream=False,
377
+ **kwargs
378
+ ):
379
+ if isinstance(msgs, str):
380
+ msgs = json.loads(msgs)
381
+
382
+ copy_msgs = deepcopy(msgs)
383
+ assert len(copy_msgs) > 0, 'msgs is empty'
384
+ assert sampling or not stream, 'if use stream mode, make sure sampling=True'
385
+
386
+ if image is not None and isinstance(copy_msgs[0]['content'], str):
387
+ copy_msgs[0]['content'] = [image, copy_msgs[0]['content']]
388
+
389
+ images = []
390
+ tgt_sizes = []
391
+ for i, msg in enumerate(copy_msgs):
392
+ role = msg["role"]
393
+ content = msg["content"]
394
+ assert role in ["user", "assistant"]
395
+ if i == 0:
396
+ assert role == "user", "The role of first msg should be user"
397
+ if isinstance(content, str):
398
+ content = [content]
399
+
400
+ cur_msgs = []
401
+ for c in content:
402
+ if isinstance(c, Image.Image):
403
+ image = c
404
+ if self.config.slice_mode:
405
+ slice_images, image_placeholder = self.get_slice_image_placeholder(
406
+ image, tokenizer
407
+ )
408
+ cur_msgs.append(image_placeholder)
409
+ for slice_image in slice_images:
410
+ slice_image = self.transform(slice_image)
411
+ H, W = slice_image.shape[1:]
412
+ images.append(self.reshape_by_patch(slice_image))
413
+ tgt_sizes.append(torch.Tensor([H // self.config.patch_size, W // self.config.patch_size]).type(torch.int32))
414
+ else:
415
+ images.append(self.transform(image))
416
+ cur_msgs.append(
417
+ tokenizer.im_start
418
+ + tokenizer.unk_token * self.config.query_num
419
+ + tokenizer.im_end
420
+ )
421
+ elif isinstance(c, str):
422
+ cur_msgs.append(c)
423
+
424
+
425
+ msg['content'] = '\n'.join(cur_msgs)
426
+ if tgt_sizes:
427
+ tgt_sizes = torch.vstack(tgt_sizes)
428
+
429
+ if system_prompt:
430
+ sys_msg = {'role': 'system', 'content': system_prompt}
431
+ copy_msgs = [sys_msg] + copy_msgs
432
+
433
+ input_ids = tokenizer.apply_chat_template(copy_msgs, tokenize=True, add_generation_prompt=False)
434
+
435
+ if sampling:
436
+ generation_config = {
437
+ "top_p": 0.8,
438
+ "top_k": 100,
439
+ "temperature": 0.7,
440
+ "do_sample": True,
441
+ "repetition_penalty": 1.05
442
+ }
443
+ else:
444
+ generation_config = {
445
+ "num_beams": 3,
446
+ "repetition_penalty": 1.2,
447
+ }
448
+
449
+ generation_config.update(
450
+ (k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
451
+ )
452
+
453
+ with torch.inference_mode():
454
+ res, vision_hidden_states = self.generate(
455
+ input_id_list=[input_ids],
456
+ max_inp_length=max_inp_length,
457
+ img_list=[images],
458
+ tgt_sizes=[tgt_sizes],
459
+ tokenizer=tokenizer,
460
+ max_new_tokens=max_new_tokens,
461
+ vision_hidden_states=vision_hidden_states,
462
+ return_vision_hidden_states=True,
463
+ stream=stream,
464
+ **generation_config
465
+ )
466
+
467
+ if stream:
468
+ def stream_gen():
469
+ for text in res:
470
+ text = text.replace(tokenizer.eot_token, '').replace(tokenizer.eos_token, '')
471
+ yield text
472
+ return stream_gen()
473
+
474
+ else:
475
+ answer = res[0]
476
+ return answer
477
+
478
+
479
+ class PreTrainedTokenizerFastWrapper(PreTrainedTokenizerFast):
480
+ def __init__(self, **kwargs):
481
+ super().__init__(**kwargs)
482
+ self.eot_token = "<|eot_id|>"
483
+ self.im_start = "<image>"
484
+ self.im_end = "</image>"
485
+ self.ref_start = "<ref>"
486
+ self.ref_end = "</ref>"
487
+ self.box_start = "<box>"
488
+ self.box_end = "</box>"
489
+ self.quad_start = "<quad>"
490
+ self.quad_end = "</quad>"
491
+ self.slice_start = "<slice>"
492
+ self.slice_end = "</slice>"
493
+
494
+ @property
495
+ def eos_id(self):
496
+ return self.eos_token_id
497
+
498
+ @property
499
+ def bos_id(self):
500
+ return self.bos_token_id
501
+
502
+ @property
503
+ def unk_id(self):
504
+ return self.unk_token_id
505
+
506
+ @property
507
+ def eot_id(self):
508
+ return self.convert_tokens_to_ids(self.eot_token)
509
+
510
+ @property
511
+ def im_start_id(self):
512
+ return self.convert_tokens_to_ids(self.im_start)
513
+
514
+ @property
515
+ def im_end_id(self):
516
+ return self.convert_tokens_to_ids(self.im_end)
517
+
518
+ @staticmethod
519
+ def escape(text: str) -> str:
520
+ return text
521
+
522
+ @staticmethod
523
+ def unescape(text: str) -> str:
524
+ return text
525
+
526
+
527
+ def pad(orig_items, key, max_length=None, padding_value=0, padding_side="left"):
528
+ items = []
529
+ if isinstance(orig_items[0][key], list):
530
+ assert isinstance(orig_items[0][key][0], torch.Tensor)
531
+ for it in orig_items:
532
+ for tr in it[key]:
533
+ items.append({key: tr})
534
+ else:
535
+ assert isinstance(orig_items[0][key], torch.Tensor)
536
+ items = orig_items
537
+
538
+ batch_size = len(items)
539
+ shape = items[0][key].shape
540
+ dim = len(shape)
541
+ assert dim <= 3
542
+ if max_length is None:
543
+ max_length = 0
544
+ max_length = max(max_length, max(item[key].shape[-1] for item in items))
545
+ min_length = min(item[key].shape[-1] for item in items)
546
+ dtype = items[0][key].dtype
547
+
548
+ if dim == 1:
549
+ return torch.cat([item[key] for item in items], dim=0)
550
+ elif dim == 2:
551
+ if max_length == min_length:
552
+ return torch.cat([item[key] for item in items], dim=0)
553
+ tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
554
+ else:
555
+ tensor = (
556
+ torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
557
+ + padding_value
558
+ )
559
+
560
+ for i, item in enumerate(items):
561
+ if dim == 2:
562
+ if padding_side == "left":
563
+ tensor[i, -len(item[key][0]) :] = item[key][0].clone()
564
+ else:
565
+ tensor[i, : len(item[key][0])] = item[key][0].clone()
566
+ elif dim == 3:
567
+ if padding_side == "left":
568
+ tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
569
+ else:
570
+ tensor[i, : len(item[key][0]), :] = item[key][0].clone()
571
+
572
+ return tensor
573
+
574
+
575
+ def slice_image(
576
+ image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
577
+ ):
578
+ original_size = image.size
579
+ original_width, original_height = original_size
580
+ log_ratio = math.log(original_width / original_height)
581
+ ratio = original_width * original_height / (scale_resolution * scale_resolution)
582
+ multiple = min(math.ceil(ratio), max_slice_nums)
583
+
584
+ source_image = None
585
+ best_grid = None
586
+ patches = []
587
+
588
+ if multiple <= 1 or never_split:
589
+ # dont need to slice, upsample
590
+ best_size = find_best_resize(
591
+ original_size, scale_resolution, patch_size, allow_upscale=True
592
+ )
593
+ source_image = image.resize(best_size, Image.Resampling.BICUBIC)
594
+ else:
595
+ candidate_split_grids_nums = []
596
+ for i in [multiple - 1, multiple, multiple + 1]:
597
+ if i == 1 or i > max_slice_nums:
598
+ continue
599
+ candidate_split_grids_nums.append(i)
600
+
601
+ # source image, down-sampling and ensure divided by patch_size
602
+ best_resize = find_best_resize(original_size, scale_resolution, patch_size)
603
+ source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
604
+ candidate_grids = []
605
+
606
+ # find best grid
607
+ for split_grids_nums in candidate_split_grids_nums:
608
+ m = 1
609
+ while m <= split_grids_nums:
610
+ if split_grids_nums % m == 0:
611
+ candidate_grids.append([m, split_grids_nums // m])
612
+ m += 1
613
+
614
+ best_grid = [1, 1]
615
+ min_error = float("inf")
616
+ for grid in candidate_grids:
617
+ error = abs(log_ratio - math.log(grid[0] / grid[1]))
618
+ if error < min_error:
619
+ best_grid = grid
620
+ min_error = error
621
+
622
+ refine_size = get_refine_size(
623
+ original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
624
+ )
625
+
626
+ refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
627
+ patches = split_to_patches(refine_image, best_grid)
628
+
629
+ return source_image, patches, best_grid
630
+
631
+
632
+ def ensure_divide(length, patch_size):
633
+ return max(round(length / patch_size) * patch_size, patch_size)
634
+
635
+
636
+ def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
637
+ width, height = original_size
638
+ if (width * height > scale_resolution * scale_resolution) or allow_upscale:
639
+ r = width / height
640
+ height = int(scale_resolution / math.sqrt(r))
641
+ width = int(height * r)
642
+ best_width = ensure_divide(width, patch_size)
643
+ best_height = ensure_divide(height, patch_size)
644
+ return (best_width, best_height)
645
+
646
+
647
+ def get_refine_size(
648
+ original_size, grid, scale_resolution, patch_size, allow_upscale=False
649
+ ):
650
+ width, height = original_size
651
+ grid_x, grid_y = grid
652
+
653
+ refine_width = ensure_divide(width, grid_x)
654
+ refine_height = ensure_divide(height, grid_y)
655
+
656
+ grid_width = refine_width / grid_x
657
+ grid_height = refine_height / grid_y
658
+
659
+ best_grid_size = find_best_resize(
660
+ (grid_width, grid_height),
661
+ scale_resolution,
662
+ patch_size,
663
+ allow_upscale=allow_upscale,
664
+ )
665
+
666
+ refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
667
+
668
+ return refine_size
669
+
670
+
671
+ def split_to_patches(image, grid):
672
+ patches = []
673
+ width, height = image.size
674
+ grid_x = int(width / grid[0])
675
+ grid_y = int(height / grid[1])
676
+
677
+ for i in range(0, height, grid_y):
678
+ images = []
679
+ for j in range(0, width, grid_x):
680
+ box = (j, i, j + grid_x, i + grid_y)
681
+ patch = image.crop(box)
682
+ images.append(patch)
683
+ patches.append(images)
684
+
685
+ return patches
686
+
687
+
688
+ def get_grid_placeholder(tokenizer, grid, query_num):
689
+ image_placeholder = (
690
+ tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
691
+ )
692
+
693
+ cols = grid[0]
694
+ rows = grid[1]
695
+ slices = []
696
+ for i in range(rows):
697
+ lines = []
698
+ for j in range(cols):
699
+ lines.append(image_placeholder)
700
+ slices.append("".join(lines))
701
+ slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
702
+ return slice_placeholder
resampler.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import partial
2
+ import numpy as np
3
+
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn.init import trunc_normal_
7
+
8
+ def get_2d_sincos_pos_embed(embed_dim, image_size):
9
+ """
10
+ image_size: image_size or (image_height, image_width)
11
+ return:
12
+ pos_embed: [image_height, image_width, embed_dim]
13
+ """
14
+ if isinstance(image_size, int):
15
+ grid_h_size, grid_w_size = image_size, image_size
16
+ else:
17
+ grid_h_size, grid_w_size = image_size[0], image_size[1]
18
+
19
+ grid_h = np.arange(grid_h_size, dtype=np.float32)
20
+ grid_w = np.arange(grid_w_size, dtype=np.float32)
21
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
22
+ grid = np.stack(grid, axis=0)
23
+
24
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
25
+ return pos_embed
26
+
27
+
28
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
29
+ assert embed_dim % 2 == 0
30
+
31
+ # use half of dimensions to encode grid_h
32
+ emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0]) # (H, W, D/2)
33
+ emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1]) # (H, W, D/2)
34
+
35
+ emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D)
36
+ return emb
37
+
38
+
39
+ def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos):
40
+ """
41
+ embed_dim: output dimension for each position
42
+ pos: a list of positions to be encoded: size (H, W)
43
+ out: (H, W, D)
44
+ """
45
+ assert embed_dim % 2 == 0
46
+ omega = np.arange(embed_dim // 2, dtype=np.float32)
47
+ omega /= embed_dim / 2.
48
+ omega = 1. / 10000 ** omega # (D/2,)
49
+
50
+ out = np.einsum('hw,d->hwd', pos, omega) # (H, W, D/2), outer product
51
+
52
+ emb_sin = np.sin(out) # (H, W, D/2)
53
+ emb_cos = np.cos(out) # (H, W, D/2)
54
+
55
+ emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
56
+ return emb
57
+
58
+
59
+ class Resampler(nn.Module):
60
+ """
61
+ A 2D perceiver-resampler network with one cross attention layers by
62
+ given learnable queries and 2d sincos pos_emb
63
+ Outputs:
64
+ A tensor with the shape of (batch_size, num_queries, embed_dim)
65
+ """
66
+
67
+ def __init__(
68
+ self,
69
+ num_queries,
70
+ embed_dim,
71
+ num_heads,
72
+ kv_dim=None,
73
+ norm_layer=partial(nn.LayerNorm, eps=1e-6),
74
+ adaptive=False,
75
+ max_size=(70, 70),
76
+ ):
77
+ super().__init__()
78
+ self.num_queries = num_queries
79
+ self.embed_dim = embed_dim
80
+ self.num_heads = num_heads
81
+ self.adaptive = adaptive
82
+ self.max_size = max_size
83
+
84
+ self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
85
+ trunc_normal_(self.query, std=.02)
86
+
87
+ if kv_dim is not None and kv_dim != embed_dim:
88
+ self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
89
+ else:
90
+ self.kv_proj = nn.Identity()
91
+
92
+ self.attn = nn.MultiheadAttention(embed_dim, num_heads)
93
+ self.ln_q = norm_layer(embed_dim)
94
+ self.ln_kv = norm_layer(embed_dim)
95
+
96
+ self.ln_post = norm_layer(embed_dim)
97
+ self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))
98
+
99
+ self._set_2d_pos_cache(self.max_size)
100
+ self.apply(self._init_weights)
101
+
102
+ def _set_2d_pos_cache(self, max_size, device='cpu'):
103
+ pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
104
+ self.register_buffer("pos_embed", pos_embed, persistent=False)
105
+
106
+ def _adjust_pos_cache(self, tgt_sizes, device):
107
+ max_h = torch.max(tgt_sizes[:, 0])
108
+ max_w = torch.max(tgt_sizes[:, 1])
109
+ if max_h > self.max_size[0] or max_w > self.max_size[1]:
110
+ self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])]
111
+ self._set_2d_pos_cache(self.max_size, device)
112
+
113
+ def _init_weights(self, m):
114
+ if isinstance(m, nn.Linear):
115
+ trunc_normal_(m.weight, std=.02)
116
+ if isinstance(m, nn.Linear) and m.bias is not None:
117
+ nn.init.constant_(m.bias, 0)
118
+ elif isinstance(m, nn.LayerNorm):
119
+ nn.init.constant_(m.bias, 0)
120
+ nn.init.constant_(m.weight, 1.0)
121
+
122
+ def forward(self, x, tgt_sizes=None):
123
+ assert x.shape[0] == tgt_sizes.shape[0]
124
+ bs = x.shape[0]
125
+
126
+ device = x.device
127
+ dtype = x.dtype
128
+
129
+ patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]
130
+
131
+ self._adjust_pos_cache(tgt_sizes, device=device)
132
+
133
+ max_patch_len = torch.max(patch_len)
134
+ key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device)
135
+
136
+ pos_embed = []
137
+ for i in range(bs):
138
+ tgt_h, tgt_w = tgt_sizes[i]
139
+ pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype)) # patches * D
140
+ key_padding_mask[i, patch_len[i]:] = True
141
+
142
+ pos_embed = torch.nn.utils.rnn.pad_sequence(
143
+ pos_embed, batch_first=True, padding_value=0.0).permute(1, 0, 2) # BLD => L * B * D
144
+
145
+ x = self.kv_proj(x) # B * L * D
146
+ x = self.ln_kv(x).permute(1, 0, 2) # L * B * D
147
+
148
+ q = self.ln_q(self.query) # Q * D
149
+
150
+ out = self.attn(
151
+ self._repeat(q, bs), # Q * B * D
152
+ x + pos_embed, # L * B * D + L * B * D
153
+ x,
154
+ key_padding_mask=key_padding_mask)[0]
155
+ # out: Q * B * D
156
+ x = out.permute(1, 0, 2) # B * Q * D
157
+
158
+ x = self.ln_post(x)
159
+ x = x @ self.proj
160
+ return x
161
+
162
+ def _repeat(self, query, N: int):
163
+ return query.unsqueeze(1).repeat(1, N, 1)