fliou2 commited on
Commit
1cd9afc
1 Parent(s): db02525

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,725 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en-v1.5
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy@1
8
+ - cosine_accuracy@3
9
+ - cosine_accuracy@5
10
+ - cosine_accuracy@10
11
+ - cosine_precision@1
12
+ - cosine_precision@3
13
+ - cosine_precision@5
14
+ - cosine_precision@10
15
+ - cosine_recall@1
16
+ - cosine_recall@3
17
+ - cosine_recall@5
18
+ - cosine_recall@10
19
+ - cosine_ndcg@10
20
+ - cosine_mrr@10
21
+ - cosine_map@100
22
+ - dot_accuracy@1
23
+ - dot_accuracy@3
24
+ - dot_accuracy@5
25
+ - dot_accuracy@10
26
+ - dot_precision@1
27
+ - dot_precision@3
28
+ - dot_precision@5
29
+ - dot_precision@10
30
+ - dot_recall@1
31
+ - dot_recall@3
32
+ - dot_recall@5
33
+ - dot_recall@10
34
+ - dot_ndcg@10
35
+ - dot_mrr@10
36
+ - dot_map@100
37
+ pipeline_tag: sentence-similarity
38
+ tags:
39
+ - sentence-transformers
40
+ - sentence-similarity
41
+ - feature-extraction
42
+ - generated_from_trainer
43
+ - dataset_size:734
44
+ - loss:MultipleNegativesRankingLoss
45
+ widget:
46
+ - source_sentence: List of ex-dividend dates in my portfolio
47
+ sentences:
48
+ - '[{"get_portfolio(None)": "portfolio"}, {"get_attribute(''portfolio'',[''gains''],''<DATES>'')":
49
+ "portfolio"}, {"sort(''portfolio'',''gains'',''desc'')": "portfolio"}]'
50
+ - '[{"get_portfolio(None)": "portfolio"}, {"get_dividend_history(''portfolio'',''next
51
+ 6 month'')": "portfolio"}]'
52
+ - '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''asset_class'',''global
53
+ bonds'',''portfolio'')": "portfolio"}]'
54
+ - source_sentence: How has the momentum factor impacted my investment gains [DATES]?
55
+ sentences:
56
+ - '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''sector'',''sector
57
+ information technology'',''portfolio'')": "portfolio"}]'
58
+ - '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''returns'',None,''returns'')":
59
+ "portfolio"}, {"filter(''portfolio'',''ticker'',''=='',''<TICKER1>'')": "portfolio"}]'
60
+ - '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''factor'',''momentum'',''returns'')":
61
+ "portfolio"}]'
62
+ - source_sentence: how do different asset types contribute to my portfolio's returns?
63
+ sentences:
64
+ - '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''asset_class'',None,''returns'')":
65
+ "portfolio"}]'
66
+ - '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''region'',None,''returns'')":
67
+ "portfolio"}]'
68
+ - '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''returns'',None,''returns'')":
69
+ "portfolio"}, {"filter(''portfolio'',''ticker'',''=='',''<TICKER1>'')": "portfolio"}]'
70
+ - source_sentence: compare my accounts to market performance
71
+ sentences:
72
+ - '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''sector'',''sector
73
+ gold'',''portfolio'')": "portfolio"}]'
74
+ - '[{"get_portfolio(None)": "portfolio"}, {"get_attribute(''portfolio'',[''gains''],''<DATES>'')":
75
+ "portfolio"}, {"sort(''portfolio'',''gains'',''desc'')": "portfolio"}, {"get_attribute([''<TICKER1>''],[''returns''],''<DATES>'')":
76
+ "<TICKER1>_performance_data"}]'
77
+ - '[{"get_portfolio(None)": "portfolio"}, {"get_attribute(''portfolio'',[''gains''],''<DATES>'')":
78
+ "portfolio"}, {"sort(''portfolio'',''gains'',''desc'')": "portfolio"}, {"get_attribute([''SPY''],[''returns''],''<DATES>'')":
79
+ "market_performance_data"}]'
80
+ - source_sentence: how have I done in US equity [DATES]?
81
+ sentences:
82
+ - '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''asset_class'',''us
83
+ equity'',''returns'')": "portfolio"}]'
84
+ - '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''sector'',''sector
85
+ utilities'',''portfolio'')": "portfolio"}]'
86
+ - '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''asset_class'',''us
87
+ equity'',''returns'')": "portfolio"}]'
88
+ model-index:
89
+ - name: SentenceTransformer based on BAAI/bge-small-en-v1.5
90
+ results:
91
+ - task:
92
+ type: information-retrieval
93
+ name: Information Retrieval
94
+ dataset:
95
+ name: Unknown
96
+ type: unknown
97
+ metrics:
98
+ - type: cosine_accuracy@1
99
+ value: 0.6643835616438356
100
+ name: Cosine Accuracy@1
101
+ - type: cosine_accuracy@3
102
+ value: 0.815068493150685
103
+ name: Cosine Accuracy@3
104
+ - type: cosine_accuracy@5
105
+ value: 0.8767123287671232
106
+ name: Cosine Accuracy@5
107
+ - type: cosine_accuracy@10
108
+ value: 0.9315068493150684
109
+ name: Cosine Accuracy@10
110
+ - type: cosine_precision@1
111
+ value: 0.6643835616438356
112
+ name: Cosine Precision@1
113
+ - type: cosine_precision@3
114
+ value: 0.27168949771689493
115
+ name: Cosine Precision@3
116
+ - type: cosine_precision@5
117
+ value: 0.17534246575342463
118
+ name: Cosine Precision@5
119
+ - type: cosine_precision@10
120
+ value: 0.09315068493150684
121
+ name: Cosine Precision@10
122
+ - type: cosine_recall@1
123
+ value: 0.018455098934550992
124
+ name: Cosine Recall@1
125
+ - type: cosine_recall@3
126
+ value: 0.02264079147640792
127
+ name: Cosine Recall@3
128
+ - type: cosine_recall@5
129
+ value: 0.024353120243531208
130
+ name: Cosine Recall@5
131
+ - type: cosine_recall@10
132
+ value: 0.025875190258751908
133
+ name: Cosine Recall@10
134
+ - type: cosine_ndcg@10
135
+ value: 0.17516985160301582
136
+ name: Cosine Ndcg@10
137
+ - type: cosine_mrr@10
138
+ value: 0.7525385953468143
139
+ name: Cosine Mrr@10
140
+ - type: cosine_map@100
141
+ value: 0.020976397907656166
142
+ name: Cosine Map@100
143
+ - type: dot_accuracy@1
144
+ value: 0.6643835616438356
145
+ name: Dot Accuracy@1
146
+ - type: dot_accuracy@3
147
+ value: 0.815068493150685
148
+ name: Dot Accuracy@3
149
+ - type: dot_accuracy@5
150
+ value: 0.8767123287671232
151
+ name: Dot Accuracy@5
152
+ - type: dot_accuracy@10
153
+ value: 0.9315068493150684
154
+ name: Dot Accuracy@10
155
+ - type: dot_precision@1
156
+ value: 0.6643835616438356
157
+ name: Dot Precision@1
158
+ - type: dot_precision@3
159
+ value: 0.27168949771689493
160
+ name: Dot Precision@3
161
+ - type: dot_precision@5
162
+ value: 0.17534246575342463
163
+ name: Dot Precision@5
164
+ - type: dot_precision@10
165
+ value: 0.09315068493150684
166
+ name: Dot Precision@10
167
+ - type: dot_recall@1
168
+ value: 0.018455098934550992
169
+ name: Dot Recall@1
170
+ - type: dot_recall@3
171
+ value: 0.02264079147640792
172
+ name: Dot Recall@3
173
+ - type: dot_recall@5
174
+ value: 0.024353120243531208
175
+ name: Dot Recall@5
176
+ - type: dot_recall@10
177
+ value: 0.025875190258751908
178
+ name: Dot Recall@10
179
+ - type: dot_ndcg@10
180
+ value: 0.17516985160301582
181
+ name: Dot Ndcg@10
182
+ - type: dot_mrr@10
183
+ value: 0.7525385953468143
184
+ name: Dot Mrr@10
185
+ - type: dot_map@100
186
+ value: 0.020976397907656166
187
+ name: Dot Map@100
188
+ ---
189
+
190
+ # SentenceTransformer based on BAAI/bge-small-en-v1.5
191
+
192
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
193
+
194
+ ## Model Details
195
+
196
+ ### Model Description
197
+ - **Model Type:** Sentence Transformer
198
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
199
+ - **Maximum Sequence Length:** 512 tokens
200
+ - **Output Dimensionality:** 384 tokens
201
+ - **Similarity Function:** Cosine Similarity
202
+ <!-- - **Training Dataset:** Unknown -->
203
+ <!-- - **Language:** Unknown -->
204
+ <!-- - **License:** Unknown -->
205
+
206
+ ### Model Sources
207
+
208
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
209
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
210
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
211
+
212
+ ### Full Model Architecture
213
+
214
+ ```
215
+ SentenceTransformer(
216
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
217
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
218
+ (2): Normalize()
219
+ )
220
+ ```
221
+
222
+ ## Usage
223
+
224
+ ### Direct Usage (Sentence Transformers)
225
+
226
+ First install the Sentence Transformers library:
227
+
228
+ ```bash
229
+ pip install -U sentence-transformers
230
+ ```
231
+
232
+ Then you can load this model and run inference.
233
+ ```python
234
+ from sentence_transformers import SentenceTransformer
235
+
236
+ # Download from the 🤗 Hub
237
+ model = SentenceTransformer("sentence_transformers_model_id")
238
+ # Run inference
239
+ sentences = [
240
+ 'how have I done in US equity [DATES]?',
241
+ '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'asset_class\',\'us equity\',\'returns\')": "portfolio"}]',
242
+ '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'asset_class\',\'us equity\',\'returns\')": "portfolio"}]',
243
+ ]
244
+ embeddings = model.encode(sentences)
245
+ print(embeddings.shape)
246
+ # [3, 384]
247
+
248
+ # Get the similarity scores for the embeddings
249
+ similarities = model.similarity(embeddings, embeddings)
250
+ print(similarities.shape)
251
+ # [3, 3]
252
+ ```
253
+
254
+ <!--
255
+ ### Direct Usage (Transformers)
256
+
257
+ <details><summary>Click to see the direct usage in Transformers</summary>
258
+
259
+ </details>
260
+ -->
261
+
262
+ <!--
263
+ ### Downstream Usage (Sentence Transformers)
264
+
265
+ You can finetune this model on your own dataset.
266
+
267
+ <details><summary>Click to expand</summary>
268
+
269
+ </details>
270
+ -->
271
+
272
+ <!--
273
+ ### Out-of-Scope Use
274
+
275
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
276
+ -->
277
+
278
+ ## Evaluation
279
+
280
+ ### Metrics
281
+
282
+ #### Information Retrieval
283
+
284
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
285
+
286
+ | Metric | Value |
287
+ |:--------------------|:----------|
288
+ | cosine_accuracy@1 | 0.6644 |
289
+ | cosine_accuracy@3 | 0.8151 |
290
+ | cosine_accuracy@5 | 0.8767 |
291
+ | cosine_accuracy@10 | 0.9315 |
292
+ | cosine_precision@1 | 0.6644 |
293
+ | cosine_precision@3 | 0.2717 |
294
+ | cosine_precision@5 | 0.1753 |
295
+ | cosine_precision@10 | 0.0932 |
296
+ | cosine_recall@1 | 0.0185 |
297
+ | cosine_recall@3 | 0.0226 |
298
+ | cosine_recall@5 | 0.0244 |
299
+ | cosine_recall@10 | 0.0259 |
300
+ | cosine_ndcg@10 | 0.1752 |
301
+ | cosine_mrr@10 | 0.7525 |
302
+ | **cosine_map@100** | **0.021** |
303
+ | dot_accuracy@1 | 0.6644 |
304
+ | dot_accuracy@3 | 0.8151 |
305
+ | dot_accuracy@5 | 0.8767 |
306
+ | dot_accuracy@10 | 0.9315 |
307
+ | dot_precision@1 | 0.6644 |
308
+ | dot_precision@3 | 0.2717 |
309
+ | dot_precision@5 | 0.1753 |
310
+ | dot_precision@10 | 0.0932 |
311
+ | dot_recall@1 | 0.0185 |
312
+ | dot_recall@3 | 0.0226 |
313
+ | dot_recall@5 | 0.0244 |
314
+ | dot_recall@10 | 0.0259 |
315
+ | dot_ndcg@10 | 0.1752 |
316
+ | dot_mrr@10 | 0.7525 |
317
+ | dot_map@100 | 0.021 |
318
+
319
+ <!--
320
+ ## Bias, Risks and Limitations
321
+
322
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
323
+ -->
324
+
325
+ <!--
326
+ ### Recommendations
327
+
328
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
329
+ -->
330
+
331
+ ## Training Details
332
+
333
+ ### Training Dataset
334
+
335
+ #### Unnamed Dataset
336
+
337
+
338
+ * Size: 734 training samples
339
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
340
+ * Approximate statistics based on the first 1000 samples:
341
+ | | sentence_0 | sentence_1 |
342
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
343
+ | type | string | string |
344
+ | details | <ul><li>min: 5 tokens</li><li>mean: 11.94 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 84.1 tokens</li><li>max: 194 tokens</li></ul> |
345
+ * Samples:
346
+ | sentence_0 | sentence_1 |
347
+ |:------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
348
+ | <code>what is my portfolio [DATES] cagr?</code> | <code>[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'<DATES>')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]</code> |
349
+ | <code>what is my [DATES] rate of return</code> | <code>[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'<DATES>')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]</code> |
350
+ | <code>show backtest of my performance [DATES]?</code> | <code>[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'<DATES>')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]</code> |
351
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
352
+ ```json
353
+ {
354
+ "scale": 20.0,
355
+ "similarity_fct": "cos_sim"
356
+ }
357
+ ```
358
+
359
+ ### Training Hyperparameters
360
+ #### Non-Default Hyperparameters
361
+
362
+ - `eval_strategy`: steps
363
+ - `per_device_train_batch_size`: 10
364
+ - `per_device_eval_batch_size`: 10
365
+ - `num_train_epochs`: 6
366
+ - `multi_dataset_batch_sampler`: round_robin
367
+
368
+ #### All Hyperparameters
369
+ <details><summary>Click to expand</summary>
370
+
371
+ - `overwrite_output_dir`: False
372
+ - `do_predict`: False
373
+ - `eval_strategy`: steps
374
+ - `prediction_loss_only`: True
375
+ - `per_device_train_batch_size`: 10
376
+ - `per_device_eval_batch_size`: 10
377
+ - `per_gpu_train_batch_size`: None
378
+ - `per_gpu_eval_batch_size`: None
379
+ - `gradient_accumulation_steps`: 1
380
+ - `eval_accumulation_steps`: None
381
+ - `torch_empty_cache_steps`: None
382
+ - `learning_rate`: 5e-05
383
+ - `weight_decay`: 0.0
384
+ - `adam_beta1`: 0.9
385
+ - `adam_beta2`: 0.999
386
+ - `adam_epsilon`: 1e-08
387
+ - `max_grad_norm`: 1
388
+ - `num_train_epochs`: 6
389
+ - `max_steps`: -1
390
+ - `lr_scheduler_type`: linear
391
+ - `lr_scheduler_kwargs`: {}
392
+ - `warmup_ratio`: 0.0
393
+ - `warmup_steps`: 0
394
+ - `log_level`: passive
395
+ - `log_level_replica`: warning
396
+ - `log_on_each_node`: True
397
+ - `logging_nan_inf_filter`: True
398
+ - `save_safetensors`: True
399
+ - `save_on_each_node`: False
400
+ - `save_only_model`: False
401
+ - `restore_callback_states_from_checkpoint`: False
402
+ - `no_cuda`: False
403
+ - `use_cpu`: False
404
+ - `use_mps_device`: False
405
+ - `seed`: 42
406
+ - `data_seed`: None
407
+ - `jit_mode_eval`: False
408
+ - `use_ipex`: False
409
+ - `bf16`: False
410
+ - `fp16`: False
411
+ - `fp16_opt_level`: O1
412
+ - `half_precision_backend`: auto
413
+ - `bf16_full_eval`: False
414
+ - `fp16_full_eval`: False
415
+ - `tf32`: None
416
+ - `local_rank`: 0
417
+ - `ddp_backend`: None
418
+ - `tpu_num_cores`: None
419
+ - `tpu_metrics_debug`: False
420
+ - `debug`: []
421
+ - `dataloader_drop_last`: False
422
+ - `dataloader_num_workers`: 0
423
+ - `dataloader_prefetch_factor`: None
424
+ - `past_index`: -1
425
+ - `disable_tqdm`: False
426
+ - `remove_unused_columns`: True
427
+ - `label_names`: None
428
+ - `load_best_model_at_end`: False
429
+ - `ignore_data_skip`: False
430
+ - `fsdp`: []
431
+ - `fsdp_min_num_params`: 0
432
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
433
+ - `fsdp_transformer_layer_cls_to_wrap`: None
434
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
435
+ - `deepspeed`: None
436
+ - `label_smoothing_factor`: 0.0
437
+ - `optim`: adamw_torch
438
+ - `optim_args`: None
439
+ - `adafactor`: False
440
+ - `group_by_length`: False
441
+ - `length_column_name`: length
442
+ - `ddp_find_unused_parameters`: None
443
+ - `ddp_bucket_cap_mb`: None
444
+ - `ddp_broadcast_buffers`: False
445
+ - `dataloader_pin_memory`: True
446
+ - `dataloader_persistent_workers`: False
447
+ - `skip_memory_metrics`: True
448
+ - `use_legacy_prediction_loop`: False
449
+ - `push_to_hub`: False
450
+ - `resume_from_checkpoint`: None
451
+ - `hub_model_id`: None
452
+ - `hub_strategy`: every_save
453
+ - `hub_private_repo`: False
454
+ - `hub_always_push`: False
455
+ - `gradient_checkpointing`: False
456
+ - `gradient_checkpointing_kwargs`: None
457
+ - `include_inputs_for_metrics`: False
458
+ - `eval_do_concat_batches`: True
459
+ - `fp16_backend`: auto
460
+ - `push_to_hub_model_id`: None
461
+ - `push_to_hub_organization`: None
462
+ - `mp_parameters`:
463
+ - `auto_find_batch_size`: False
464
+ - `full_determinism`: False
465
+ - `torchdynamo`: None
466
+ - `ray_scope`: last
467
+ - `ddp_timeout`: 1800
468
+ - `torch_compile`: False
469
+ - `torch_compile_backend`: None
470
+ - `torch_compile_mode`: None
471
+ - `dispatch_batches`: None
472
+ - `split_batches`: None
473
+ - `include_tokens_per_second`: False
474
+ - `include_num_input_tokens_seen`: False
475
+ - `neftune_noise_alpha`: None
476
+ - `optim_target_modules`: None
477
+ - `batch_eval_metrics`: False
478
+ - `eval_on_start`: False
479
+ - `eval_use_gather_object`: False
480
+ - `batch_sampler`: batch_sampler
481
+ - `multi_dataset_batch_sampler`: round_robin
482
+
483
+ </details>
484
+
485
+ ### Training Logs
486
+ <details><summary>Click to expand</summary>
487
+
488
+ | Epoch | Step | cosine_map@100 |
489
+ |:------:|:----:|:--------------:|
490
+ | 0.0270 | 2 | 0.0136 |
491
+ | 0.0541 | 4 | 0.0138 |
492
+ | 0.0811 | 6 | 0.0140 |
493
+ | 0.1081 | 8 | 0.0142 |
494
+ | 0.1351 | 10 | 0.0144 |
495
+ | 0.1622 | 12 | 0.0146 |
496
+ | 0.1892 | 14 | 0.0147 |
497
+ | 0.2162 | 16 | 0.0150 |
498
+ | 0.2432 | 18 | 0.0152 |
499
+ | 0.2703 | 20 | 0.0157 |
500
+ | 0.2973 | 22 | 0.0165 |
501
+ | 0.3243 | 24 | 0.0168 |
502
+ | 0.3514 | 26 | 0.0167 |
503
+ | 0.3784 | 28 | 0.0170 |
504
+ | 0.4054 | 30 | 0.0174 |
505
+ | 0.4324 | 32 | 0.0180 |
506
+ | 0.4595 | 34 | 0.0181 |
507
+ | 0.4865 | 36 | 0.0181 |
508
+ | 0.5135 | 38 | 0.0182 |
509
+ | 0.5405 | 40 | 0.0182 |
510
+ | 0.5676 | 42 | 0.0182 |
511
+ | 0.5946 | 44 | 0.0183 |
512
+ | 0.6216 | 46 | 0.0183 |
513
+ | 0.6486 | 48 | 0.0183 |
514
+ | 0.6757 | 50 | 0.0183 |
515
+ | 0.7027 | 52 | 0.0182 |
516
+ | 0.7297 | 54 | 0.0185 |
517
+ | 0.7568 | 56 | 0.0186 |
518
+ | 0.7838 | 58 | 0.0189 |
519
+ | 0.8108 | 60 | 0.0190 |
520
+ | 0.8378 | 62 | 0.0191 |
521
+ | 0.8649 | 64 | 0.0193 |
522
+ | 0.8919 | 66 | 0.0197 |
523
+ | 0.9189 | 68 | 0.0198 |
524
+ | 0.9459 | 70 | 0.0196 |
525
+ | 0.9730 | 72 | 0.0196 |
526
+ | 1.0 | 74 | 0.0198 |
527
+ | 1.0270 | 76 | 0.0198 |
528
+ | 1.0541 | 78 | 0.0198 |
529
+ | 1.0811 | 80 | 0.0199 |
530
+ | 1.1081 | 82 | 0.0199 |
531
+ | 1.1351 | 84 | 0.0199 |
532
+ | 1.1622 | 86 | 0.0199 |
533
+ | 1.1892 | 88 | 0.0199 |
534
+ | 1.2162 | 90 | 0.0199 |
535
+ | 1.2432 | 92 | 0.0199 |
536
+ | 1.2703 | 94 | 0.0200 |
537
+ | 1.2973 | 96 | 0.0199 |
538
+ | 1.3243 | 98 | 0.0197 |
539
+ | 1.3514 | 100 | 0.0198 |
540
+ | 1.3784 | 102 | 0.0198 |
541
+ | 1.4054 | 104 | 0.0198 |
542
+ | 1.4324 | 106 | 0.0200 |
543
+ | 1.4595 | 108 | 0.0201 |
544
+ | 1.4865 | 110 | 0.0202 |
545
+ | 1.5135 | 112 | 0.0202 |
546
+ | 1.5405 | 114 | 0.0203 |
547
+ | 1.5676 | 116 | 0.0203 |
548
+ | 1.5946 | 118 | 0.0201 |
549
+ | 1.6216 | 120 | 0.0201 |
550
+ | 1.6486 | 122 | 0.0202 |
551
+ | 1.6757 | 124 | 0.0201 |
552
+ | 1.7027 | 126 | 0.0201 |
553
+ | 1.7297 | 128 | 0.0201 |
554
+ | 1.7568 | 130 | 0.0200 |
555
+ | 1.7838 | 132 | 0.0200 |
556
+ | 1.8108 | 134 | 0.0202 |
557
+ | 1.8378 | 136 | 0.0201 |
558
+ | 1.8649 | 138 | 0.0202 |
559
+ | 1.8919 | 140 | 0.0202 |
560
+ | 1.9189 | 142 | 0.0202 |
561
+ | 1.9459 | 144 | 0.0201 |
562
+ | 1.9730 | 146 | 0.0202 |
563
+ | 2.0 | 148 | 0.0202 |
564
+ | 2.0270 | 150 | 0.0204 |
565
+ | 2.0541 | 152 | 0.0204 |
566
+ | 2.0811 | 154 | 0.0203 |
567
+ | 2.1081 | 156 | 0.0203 |
568
+ | 2.1351 | 158 | 0.0204 |
569
+ | 2.1622 | 160 | 0.0204 |
570
+ | 2.1892 | 162 | 0.0202 |
571
+ | 2.2162 | 164 | 0.0202 |
572
+ | 2.2432 | 166 | 0.0201 |
573
+ | 2.2703 | 168 | 0.0202 |
574
+ | 2.2973 | 170 | 0.0202 |
575
+ | 2.3243 | 172 | 0.0202 |
576
+ | 2.3514 | 174 | 0.0202 |
577
+ | 2.3784 | 176 | 0.0202 |
578
+ | 2.4054 | 178 | 0.0202 |
579
+ | 2.4324 | 180 | 0.0203 |
580
+ | 2.4595 | 182 | 0.0203 |
581
+ | 2.4865 | 184 | 0.0203 |
582
+ | 2.5135 | 186 | 0.0204 |
583
+ | 2.5405 | 188 | 0.0204 |
584
+ | 2.5676 | 190 | 0.0203 |
585
+ | 2.5946 | 192 | 0.0203 |
586
+ | 2.6216 | 194 | 0.0203 |
587
+ | 2.6486 | 196 | 0.0202 |
588
+ | 2.6757 | 198 | 0.0202 |
589
+ | 2.7027 | 200 | 0.0202 |
590
+ | 2.7297 | 202 | 0.0202 |
591
+ | 2.7568 | 204 | 0.0201 |
592
+ | 2.7838 | 206 | 0.0201 |
593
+ | 2.8108 | 208 | 0.0201 |
594
+ | 2.8378 | 210 | 0.0201 |
595
+ | 2.8649 | 212 | 0.0202 |
596
+ | 2.8919 | 214 | 0.0202 |
597
+ | 2.9189 | 216 | 0.0203 |
598
+ | 2.9459 | 218 | 0.0203 |
599
+ | 2.9730 | 220 | 0.0204 |
600
+ | 3.0 | 222 | 0.0204 |
601
+ | 3.0270 | 224 | 0.0204 |
602
+ | 3.0541 | 226 | 0.0206 |
603
+ | 3.0811 | 228 | 0.0205 |
604
+ | 3.1081 | 230 | 0.0205 |
605
+ | 3.1351 | 232 | 0.0205 |
606
+ | 3.1622 | 234 | 0.0206 |
607
+ | 3.1892 | 236 | 0.0206 |
608
+ | 3.2162 | 238 | 0.0206 |
609
+ | 3.2432 | 240 | 0.0206 |
610
+ | 3.2703 | 242 | 0.0206 |
611
+ | 3.2973 | 244 | 0.0205 |
612
+ | 3.3243 | 246 | 0.0205 |
613
+ | 3.3514 | 248 | 0.0204 |
614
+ | 3.3784 | 250 | 0.0204 |
615
+ | 3.4054 | 252 | 0.0204 |
616
+ | 3.4324 | 254 | 0.0205 |
617
+ | 3.4595 | 256 | 0.0205 |
618
+ | 3.4865 | 258 | 0.0205 |
619
+ | 3.5135 | 260 | 0.0205 |
620
+ | 3.5405 | 262 | 0.0204 |
621
+ | 3.5676 | 264 | 0.0204 |
622
+ | 3.5946 | 266 | 0.0204 |
623
+ | 3.6216 | 268 | 0.0203 |
624
+ | 3.6486 | 270 | 0.0203 |
625
+ | 3.6757 | 272 | 0.0204 |
626
+ | 3.7027 | 274 | 0.0204 |
627
+ | 3.7297 | 276 | 0.0206 |
628
+ | 3.7568 | 278 | 0.0206 |
629
+ | 3.7838 | 280 | 0.0206 |
630
+ | 3.8108 | 282 | 0.0206 |
631
+ | 3.8378 | 284 | 0.0206 |
632
+ | 3.8649 | 286 | 0.0205 |
633
+ | 3.8919 | 288 | 0.0206 |
634
+ | 3.9189 | 290 | 0.0207 |
635
+ | 3.9459 | 292 | 0.0206 |
636
+ | 3.9730 | 294 | 0.0206 |
637
+ | 4.0 | 296 | 0.0207 |
638
+ | 4.0270 | 298 | 0.0207 |
639
+ | 4.0541 | 300 | 0.0207 |
640
+ | 4.0811 | 302 | 0.0208 |
641
+ | 4.1081 | 304 | 0.0208 |
642
+ | 4.1351 | 306 | 0.0207 |
643
+ | 4.1622 | 308 | 0.0207 |
644
+ | 4.1892 | 310 | 0.0207 |
645
+ | 4.2162 | 312 | 0.0208 |
646
+ | 4.2432 | 314 | 0.0208 |
647
+ | 4.2703 | 316 | 0.0208 |
648
+ | 4.2973 | 318 | 0.0208 |
649
+ | 4.3243 | 320 | 0.0208 |
650
+ | 4.3514 | 322 | 0.0208 |
651
+ | 4.3784 | 324 | 0.0208 |
652
+ | 4.4054 | 326 | 0.0208 |
653
+ | 4.4324 | 328 | 0.0207 |
654
+ | 4.4595 | 330 | 0.0207 |
655
+ | 4.4865 | 332 | 0.0207 |
656
+ | 4.5135 | 334 | 0.0207 |
657
+ | 4.5405 | 336 | 0.0207 |
658
+ | 4.5676 | 338 | 0.0207 |
659
+ | 4.5946 | 340 | 0.0207 |
660
+ | 4.6216 | 342 | 0.0208 |
661
+ | 4.6486 | 344 | 0.0208 |
662
+ | 4.6757 | 346 | 0.0208 |
663
+ | 4.7027 | 348 | 0.0208 |
664
+ | 4.7297 | 350 | 0.0208 |
665
+ | 4.7568 | 352 | 0.0209 |
666
+ | 4.7838 | 354 | 0.0209 |
667
+ | 4.8108 | 356 | 0.0210 |
668
+
669
+ </details>
670
+
671
+ ### Framework Versions
672
+ - Python: 3.10.9
673
+ - Sentence Transformers: 3.0.1
674
+ - Transformers: 4.44.0
675
+ - PyTorch: 2.4.0+cu121
676
+ - Accelerate: 0.33.0
677
+ - Datasets: 2.20.0
678
+ - Tokenizers: 0.19.1
679
+
680
+ ## Citation
681
+
682
+ ### BibTeX
683
+
684
+ #### Sentence Transformers
685
+ ```bibtex
686
+ @inproceedings{reimers-2019-sentence-bert,
687
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
688
+ author = "Reimers, Nils and Gurevych, Iryna",
689
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
690
+ month = "11",
691
+ year = "2019",
692
+ publisher = "Association for Computational Linguistics",
693
+ url = "https://arxiv.org/abs/1908.10084",
694
+ }
695
+ ```
696
+
697
+ #### MultipleNegativesRankingLoss
698
+ ```bibtex
699
+ @misc{henderson2017efficient,
700
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
701
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
702
+ year={2017},
703
+ eprint={1705.00652},
704
+ archivePrefix={arXiv},
705
+ primaryClass={cs.CL}
706
+ }
707
+ ```
708
+
709
+ <!--
710
+ ## Glossary
711
+
712
+ *Clearly define terms in order to be accessible across audiences.*
713
+ -->
714
+
715
+ <!--
716
+ ## Model Card Authors
717
+
718
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
719
+ -->
720
+
721
+ <!--
722
+ ## Model Card Contact
723
+
724
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
725
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.44.0",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.0",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:078c2fc8a1d44b7ef3cfc4fa4a3a63f3d194193eb5a15748559182702ec674c3
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff