magnustragardh
commited on
Commit
•
6250df4
1
Parent(s):
cda35d3
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/mt5-small
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- rouge
|
8 |
+
model-index:
|
9 |
+
- name: mt5-small-finetuned-amazon-en-es
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# mt5-small-finetuned-amazon-en-es
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 3.0609
|
21 |
+
- Rouge1: 35.0709
|
22 |
+
- Rouge2: 16.7086
|
23 |
+
- Rougel: 34.3217
|
24 |
+
- Rougelsum: 34.3182
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5.6e-05
|
44 |
+
- train_batch_size: 4
|
45 |
+
- eval_batch_size: 4
|
46 |
+
- seed: 42
|
47 |
+
- gradient_accumulation_steps: 2
|
48 |
+
- total_train_batch_size: 8
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 8
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
|
57 |
+
| No log | 1.0 | 1209 | 3.3452 | 28.1494 | 11.5385 | 27.8138 | 27.9215 |
|
58 |
+
| 5.3779 | 2.0 | 2418 | 3.2066 | 29.2799 | 14.9292 | 28.3282 | 28.4643 |
|
59 |
+
| 5.3779 | 3.0 | 3627 | 3.1105 | 31.9146 | 15.8212 | 31.0157 | 30.9702 |
|
60 |
+
| 3.5145 | 4.0 | 4836 | 3.0808 | 32.6703 | 15.9624 | 31.568 | 31.5303 |
|
61 |
+
| 3.5145 | 5.0 | 6045 | 3.0837 | 33.8454 | 16.3402 | 32.6727 | 32.8738 |
|
62 |
+
| 3.2939 | 6.0 | 7254 | 3.0655 | 32.4588 | 15.713 | 31.7059 | 31.7646 |
|
63 |
+
| 3.2939 | 7.0 | 8463 | 3.0576 | 34.764 | 16.6023 | 34.1524 | 34.0333 |
|
64 |
+
| 3.2076 | 8.0 | 9672 | 3.0609 | 35.0709 | 16.7086 | 34.3217 | 34.3182 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.31.0
|
70 |
+
- Pytorch 2.0.1+cu118
|
71 |
+
- Datasets 2.14.4
|
72 |
+
- Tokenizers 0.13.3
|