File size: 3,960 Bytes
47054e3
 
 
 
814c436
47054e3
 
 
16ba800
 
47054e3
 
 
 
 
 
 
 
 
 
14f0b70
16ba800
d68af68
 
47054e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c49f4c6
e8c5851
47054e3
 
14f0b70
 
47054e3
 
d68af68
 
16ba800
 
 
d68af68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16ba800
47054e3
 
 
e8c5851
47054e3
e8c5851
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
language:
- fa
license: apache-2.0
base_model: makhataei/Whisper-Small-Common-Voice
tags:
- fa-asr
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Small Persian
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Persian

This model is a fine-tuned version of [makhataei/Whisper-Small-Common-Voice](https://huggingface.co/makhataei/Whisper-Small-Common-Voice) on the Ctejarat dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5349
- Wer: 26.2116

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 80
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 4000

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.2944        | 9.64   | 100  | 0.4843          | 33.6519 |
| 0.1048        | 19.28  | 200  | 0.4394          | 30.1706 |
| 0.0273        | 28.92  | 300  | 0.4493          | 29.7611 |
| 0.0083        | 38.55  | 400  | 0.4645          | 29.4198 |
| 0.0042        | 48.19  | 500  | 0.4744          | 28.5324 |
| 0.0026        | 57.83  | 600  | 0.4811          | 28.3276 |
| 0.0018        | 67.47  | 700  | 0.4863          | 27.6451 |
| 0.0014        | 77.11  | 800  | 0.4907          | 27.7816 |
| 0.0012        | 86.75  | 900  | 0.4945          | 27.4403 |
| 0.0009        | 96.39  | 1000 | 0.4979          | 27.4403 |
| 0.0008        | 106.02 | 1100 | 0.5010          | 26.8259 |
| 0.0007        | 115.66 | 1200 | 0.5036          | 26.8259 |
| 0.0006        | 125.3  | 1300 | 0.5062          | 26.6894 |
| 0.0006        | 134.94 | 1400 | 0.5085          | 26.3481 |
| 0.0005        | 144.58 | 1500 | 0.5107          | 26.3481 |
| 0.0004        | 154.22 | 1600 | 0.5126          | 26.4164 |
| 0.0004        | 163.86 | 1700 | 0.5145          | 26.4846 |
| 0.0004        | 173.49 | 1800 | 0.5163          | 26.3481 |
| 0.0003        | 183.13 | 1900 | 0.5179          | 30.8532 |
| 0.0003        | 192.77 | 2000 | 0.5194          | 30.8532 |
| 0.0003        | 202.41 | 2100 | 0.5209          | 30.7850 |
| 0.0003        | 212.05 | 2200 | 0.5222          | 30.9215 |
| 0.0003        | 221.69 | 2300 | 0.5236          | 30.9215 |
| 0.0003        | 231.33 | 2400 | 0.5248          | 30.9215 |
| 0.0002        | 240.96 | 2500 | 0.5259          | 30.9215 |
| 0.0002        | 250.6  | 2600 | 0.5270          | 30.7167 |
| 0.0002        | 260.24 | 2700 | 0.5280          | 30.8532 |
| 0.0002        | 269.88 | 2800 | 0.5290          | 30.8532 |
| 0.0002        | 279.52 | 2900 | 0.5299          | 30.7167 |
| 0.0002        | 289.16 | 3000 | 0.5306          | 30.7167 |
| 0.0002        | 298.8  | 3100 | 0.5314          | 30.7167 |
| 0.0002        | 308.43 | 3200 | 0.5321          | 30.7167 |
| 0.0002        | 318.07 | 3300 | 0.5327          | 30.7850 |
| 0.0002        | 327.71 | 3400 | 0.5333          | 30.7167 |
| 0.0002        | 337.35 | 3500 | 0.5337          | 30.7167 |
| 0.0002        | 346.99 | 3600 | 0.5341          | 30.7167 |
| 0.0002        | 356.63 | 3700 | 0.5344          | 30.6485 |
| 0.0002        | 366.27 | 3800 | 0.5347          | 26.2116 |
| 0.0002        | 375.9  | 3900 | 0.5348          | 26.2116 |
| 0.0002        | 385.54 | 4000 | 0.5349          | 26.2116 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.0