File size: 3,727 Bytes
cf42adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

from modeling_p5 import P5

class P5Pretraining(P5):
    def __init__(self, config):
        super().__init__(config)

        self.losses = self.config.losses.split(',')

    def train_step(self, batch):

        device = next(self.parameters()).device
        input_ids = batch['input_ids'].to(device)
        whole_word_ids = batch['whole_word_ids'].to(device)

        lm_labels = batch["target_ids"].to(device)

        loss_weights = batch["loss_weights"].to(device)

        output = self(
            input_ids=input_ids,
            whole_word_ids=whole_word_ids,
            labels=lm_labels,
            return_dict=True
        )
        assert 'loss' in output

        lm_mask = lm_labels != -100
        lm_mask = lm_mask.float()
        B, L = lm_labels.size()

        loss = output['loss']

        loss = loss.view(B, L) * lm_mask

        loss = loss.sum(dim=1) / lm_mask.sum(dim=1).clamp(min=1)

        task_counts = {task: 0 for task in self.losses}
        task_loss = {task: 0 for task in self.losses}

        results = {}

        results['loss'] = (loss * loss_weights).mean()
        results['total_loss'] = loss.detach().sum()
        results['total_loss_count'] = len(loss)

        task_counts = {task: 0 for task in self.losses}
        task_loss = {task: 0 for task in self.losses}

        for _loss, task in zip(loss.detach(), batch['task']):
            task_loss[task] += _loss
            task_counts[task] += 1

        for task in self.losses:
            if task_counts[task] > 0:
                results[f'{task}_loss'] = task_loss[task]
                results[f'{task}_loss_count'] = task_counts[task]

        return results

    @torch.no_grad()
    def valid_step(self, batch):
        self.eval()
        device = next(self.parameters()).device
        input_ids = batch['input_ids'].to(device)

        lm_labels = batch["target_ids"].to(device)

        loss_weights = batch["loss_weights"].to(device)

        output = self(
            input_ids=input_ids,
            labels=lm_labels,
            return_dict=True
        )
        assert 'loss' in output

        lm_mask = lm_labels != -100
        lm_mask = lm_mask.float()
        B, L = lm_labels.size()

        loss = output['loss']

        loss = loss.view(B, L) * lm_mask

        loss = loss.sum(dim=1) / lm_mask.sum(dim=1).clamp(min=1)

        results = {}

        results['loss'] = (loss * loss_weights).mean()
        results['total_loss'] = loss.detach().sum()
        results['total_loss_count'] = len(loss)

        task_counts = {task: 0 for task in self.losses}
        task_loss = {task: 0 for task in self.losses}

        for _loss, task in zip(loss.detach(), batch['task']):
            task_loss[task] += _loss
            task_counts[task] += 1

        for task in self.losses:
            if task_counts[task] > 0:
                results[f'{task}_loss'] = task_loss[task]
                results[f'{task}_loss_count'] = task_counts[task]

        if 'rating' in self.losses:
            output = self.generate(
                input_ids=input_ids
            )

            generated_score = self.tokenizer.batch_decode(output, skip_special_tokens=True)

            results['rating_pred'] = generated_score

        return results

    @torch.no_grad()
    def generate_step(self, batch):
        self.eval()
        device = next(self.parameters()).device
        input_ids = batch['input_ids'].to(device)

        output = self.generate(
            input_ids=input_ids,
        )

        generated_sents = self.tokenizer.batch_decode(output, skip_special_tokens=True)

        return generated_sents