Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 258.78 +/- 20.86
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd05223c9e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd05223ca70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd05223cb00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd05223cb90>", "_build": "<function ActorCriticPolicy._build at 0x7fd05223cc20>", "forward": "<function ActorCriticPolicy.forward at 0x7fd05223ccb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd05223cd40>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd05223cdd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd05223ce60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd05223cef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd05223cf80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd052219180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652852983.740462, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO1PWL5smrg81h6UuoOwJTl6bUu+jTvIOQAAgD8AAIA/ZuLmPVxHFrreEI88sFtqvEqzLLuu9LG8AAAAAAAAAAAQNH++qx5hP6bSS76/6eO+MXMivfaH1j0AAAAAAAAAAB1fdr6ksSg8jbVAOWM/Nbei+ry9u0hguAAAgD8AAIA/jasOvkip8DkSGXG6wk6KNsMBSbsMkY45AACAPwAAgD8AAJc7FAqCuvgcILsi+PqzN43wOkimwjMAAIA/AACAPwBdsz32vA2630aBunOvh7a8LmW6Y3D0NQAAgD8AAAAA/qqvvoao2j4yAMM9brHGvk7mj73Ni2c+AAAAAAAAAABlUIK+6ehGvH7KnztmrZ48e6KyPe4vgb0AAIA/AACAPybmBT64YMg6GBqfOb0xJDfs7J48YZ7AuAAAgD8AAIA/GsCRve55Nj/yZHE8Y5zgvgVEsr2tpve8AAAAAAAAAAAT6Qs+7POMu+a3i7x9qjg8kzrzPcqPa70AAIA/AACAP9PtED64o6u75xevvQ6jCL5KCpk9WgYbPwAAgD8AAIA/ZmnuPOF8gLqaJeQ6CfGwNJLPPjpZ2QO6AACAPwAAgD+zwnk9FGybujLkVjv/2LI2tumzuOI4eLoAAIA/AACAP4oWwj5pTzs/bTPOvIkp8r7WQME+n6vHvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5X6HosDkY0CUhpRSlIwBbJRN6AOMAXSUR0CAql/wRXfZdX2UKGgGaAloD0MI+rg2VIwPTECUhpRSlGgVS9toFkdAgK4FUADJVHV9lChoBmgJaA9DCIKq0asBUGBAlIaUUpRoFU3oA2gWR0CAtq+VTrE+dX2UKGgGaAloD0MI61c6Hx60Y0CUhpRSlGgVTegDaBZHQID4hNVR1ox1fZQoaAZoCWgPQwhR9wFIbaJhQJSGlFKUaBVN6ANoFkdAgRWbJ4jbBXV9lChoBmgJaA9DCBTLLa0GNWZAlIaUUpRoFU3oA2gWR0CBGfsFdLQHdX2UKGgGaAloD0MIixnh7UHoYUCUhpRSlGgVTegDaBZHQIEaKJQ+EAZ1fZQoaAZoCWgPQwicUl4rodhcQJSGlFKUaBVN6ANoFkdAgSYk0rK/23V9lChoBmgJaA9DCM5uLZPhcF9AlIaUUpRoFU3oA2gWR0CBOchUR3/xdX2UKGgGaAloD0MIYVW9/M5CZkCUhpRSlGgVTegDaBZHQIE8mKVII4V1fZQoaAZoCWgPQwhZw0Xu6WZlQJSGlFKUaBVN6ANoFkdAgUjjmKZUk3V9lChoBmgJaA9DCASqfxDJOmRAlIaUUpRoFU3oA2gWR0CBT2WKMvRJdX2UKGgGaAloD0MImgrxSLw+XkCUhpRSlGgVTegDaBZHQIFfUl5WzWx1fZQoaAZoCWgPQwhZ/RGGAStdQJSGlFKUaBVN6ANoFkdAgWIWMS9M9XV9lChoBmgJaA9DCIJ0sWmlaVdAlIaUUpRoFU3oA2gWR0CBbltLL6k7dX2UKGgGaAloD0MIRb3g0xwOYkCUhpRSlGgVTegDaBZHQIFvry4FzMl1fZQoaAZoCWgPQwivldBdkpZiQJSGlFKUaBVN6ANoFkdAgXCl9a2Wp3V9lChoBmgJaA9DCIMxIlFoMWFAlIaUUpRoFU3oA2gWR0CBdIo2GZeBdX2UKGgGaAloD0MIEJGadrHbZUCUhpRSlGgVTegDaBZHQIF9D5XU6Pt1fZQoaAZoCWgPQwgx7DAmfcllQJSGlFKUaBVN6ANoFkdAgb+TK9wm3XV9lChoBmgJaA9DCMNi1LX2t1lAlIaUUpRoFU3oA2gWR0CB3xYwqRU4dX2UKGgGaAloD0MIqYdodIe/YUCUhpRSlGgVTegDaBZHQIHj7LB9Cu51fZQoaAZoCWgPQwi7mdGPBrpjQJSGlFKUaBVN6ANoFkdAgeQbW3BpH3V9lChoBmgJaA9DCK0wfa8hpl5AlIaUUpRoFU3oA2gWR0CB8Qji4rjHdX2UKGgGaAloD0MI4jrGFRdqXUCUhpRSlGgVTegDaBZHQIIEjmfXf651fZQoaAZoCWgPQwjHuU24VylWQJSGlFKUaBVN6ANoFkdAggddvbXYlXV9lChoBmgJaA9DCJW4jnHFKGFAlIaUUpRoFU3oA2gWR0CCEpk3CKrJdX2UKGgGaAloD0MIh1Pm5hs3RkCUhpRSlGgVS/1oFkdAghVY+jdpI3V9lChoBmgJaA9DCIP6ljldIGJAlIaUUpRoFU3oA2gWR0CCGCKa5PM0dX2UKGgGaAloD0MItwvNdZoHYUCUhpRSlGgVTegDaBZHQIIlmUjcEeR1fZQoaAZoCWgPQwiEvYkhORpcQJSGlFKUaBVN6ANoFkdAgigQtSQ5m3V9lChoBmgJaA9DCGgkQiNY02JAlIaUUpRoFU3oA2gWR0CCM6VdonKGdX2UKGgGaAloD0MIVgxXB8DmYUCUhpRSlGgVTegDaBZHQII045o4+8p1fZQoaAZoCWgPQwgG2EenLlxkQJSGlFKUaBVN6ANoFkdAgjXYgA6uGXV9lChoBmgJaA9DCLACfLd5zGNAlIaUUpRoFU3oA2gWR0CCOgEKVpsXdX2UKGgGaAloD0MIqkavBigJXkCUhpRSlGgVTegDaBZHQIJDHaQFLWZ1fZQoaAZoCWgPQwhKsg5HV+hbQJSGlFKUaBVN6ANoFkdAgk7d+5OJtXV9lChoBmgJaA9DCAmp29lXzFFAlIaUUpRoFUvLaBZHQIKXCoXKr7x1fZQoaAZoCWgPQwgi/8wgvrlhQJSGlFKUaBVN6ANoFkdAgqT0Ttb9qHV9lChoBmgJaA9DCDXTvU5qrGNAlIaUUpRoFU3oA2gWR0CCqXzU7Sy/dX2UKGgGaAloD0MI8Q2Fz9biYkCUhpRSlGgVTegDaBZHQIKppUT+NtJ1fZQoaAZoCWgPQwgVHjS77mUhQJSGlFKUaBVL2mgWR0CCyRJyyUs4dX2UKGgGaAloD0MIsYf2sYIHWECUhpRSlGgVTegDaBZHQILJYmu1WsB1fZQoaAZoCWgPQwhC0TyAxQRgQJSGlFKUaBVN6ANoFkdAgswbxd6cAnV9lChoBmgJaA9DCApK0cq99VZAlIaUUpRoFU3oA2gWR0CC1xVUdaMadX2UKGgGaAloD0MIPiMRGkGkY0CUhpRSlGgVTegDaBZHQILZxgPVd5Z1fZQoaAZoCWgPQwh1yM1wAythQJSGlFKUaBVN6ANoFkdAgtx2606YFHV9lChoBmgJaA9DCNY73A4NA0VAlIaUUpRoFUuoaBZHQILiplBhQWN1fZQoaAZoCWgPQwjmXfWA+fthQJSGlFKUaBVN6ANoFkdAgunPgeii7HV9lChoBmgJaA9DCMH/VrJjoF9AlIaUUpRoFU3oA2gWR0CC7EeGwiaBdX2UKGgGaAloD0MIoMA7+fR4YECUhpRSlGgVTegDaBZHQIL3MTpPhyd1fZQoaAZoCWgPQwjLLEKxFRBlQJSGlFKUaBVN6ANoFkdAgvhhy0a6z3V9lChoBmgJaA9DCPRqgNJQNWFAlIaUUpRoFU3oA2gWR0CC+T47A+INdX2UKGgGaAloD0MIQIhkyLFPVUCUhpRSlGgVS7xoFkdAgvtFX7tRenV9lChoBmgJaA9DCJlKP+FsEGFAlIaUUpRoFU3oA2gWR0CC/PyrgflqdX2UKGgGaAloD0MI2UElrmPIOUCUhpRSlGgVS8poFkdAgw/ifpUxVXV9lChoBmgJaA9DCKD/Hrx2el9AlIaUUpRoFU3oA2gWR0CDEJiy6cy4dX2UKGgGaAloD0MIpwLuef50N0CUhpRSlGgVS71oFkdAgxJ9d/rjYXV9lChoBmgJaA9DCGg8EcR5pFFAlIaUUpRoFU3oA2gWR0CDV5aEBbOedX2UKGgGaAloD0MIznADPj98W0CUhpRSlGgVTegDaBZHQINjfx2B8QZ1fZQoaAZoCWgPQwiZYg6CDotkQJSGlFKUaBVN6ANoFkdAg2eadMCcPXV9lChoBmgJaA9DCIgTmE7rVGJAlIaUUpRoFU3oA2gWR0CDiAVLSNOudX2UKGgGaAloD0MIEB/Y8d9yYUCUhpRSlGgVTegDaBZHQIOIZV4oqkN1fZQoaAZoCWgPQwgP0egO4k5kQJSGlFKUaBVN6ANoFkdAg5dC/XXiBHV9lChoBmgJaA9DCGiTwycdqGBAlIaUUpRoFU3oA2gWR0CDmkFY+0PZdX2UKGgGaAloD0MIhnXj3ZHPZkCUhpRSlGgVTegDaBZHQIOdKUX531V1fZQoaAZoCWgPQwirQC0GD1MXwJSGlFKUaBVLwGgWR0CDpF9FWn0kdX2UKGgGaAloD0MI8rOR66a8L8CUhpRSlGgVS8ZoFkdAg6WOm78Nx3V9lChoBmgJaA9DCHb51od1K2FAlIaUUpRoFU3oA2gWR0CDq2uHvc8DdX2UKGgGaAloD0MIxQCJJtCFYkCUhpRSlGgVTegDaBZHQIOt0liSaE11fZQoaAZoCWgPQwg7iQj/ImJLQJSGlFKUaBVLxWgWR0CDssoScslLdX2UKGgGaAloD0MIccyyJ4HPYUCUhpRSlGgVTegDaBZHQIO6ZxBE8aJ1fZQoaAZoCWgPQwjCMGDJVfhWQJSGlFKUaBVN6ANoFkdAg7tU3n6l+HV9lChoBmgJaA9DCCujkc+rDmNAlIaUUpRoFU3oA2gWR0CDv3Uz9CNTdX2UKGgGaAloD0MINbQB2IDYOUCUhpRSlGgVS6poFkdAg8HZo4+8oXV9lChoBmgJaA9DCBTq6SNwr2BAlIaUUpRoFU3oA2gWR0CD0/z90ihWdX2UKGgGaAloD0MI/gxv1uCbWUCUhpRSlGgVTegDaBZHQIPUsQGwA2h1fZQoaAZoCWgPQwj0UNuGURDxv5SGlFKUaBVLz2gWR0CD1dYsd1dPdX2UKGgGaAloD0MIcRsN4C19X0CUhpRSlGgVTegDaBZHQIPWl/tpmEp1fZQoaAZoCWgPQwjggmxZvk9YQJSGlFKUaBVN6ANoFkdAhBsqDsdDIHV9lChoBmgJaA9DCO/lPjkKoBtAlIaUUpRoFUvKaBZHQIQmjsdDIBB1fZQoaAZoCWgPQwga3xeXKhZkQJSGlFKUaBVN6ANoFkdAhCdQqAjIJnV9lChoBmgJaA9DCNczhGMWTGFAlIaUUpRoFU3oA2gWR0CEK4TA31jBdX2UKGgGaAloD0MIH9YbtcK8TECUhpRSlGgVS7RoFkdAhEAgo5PuX3V9lChoBmgJaA9DCKOtSiL77GZAlIaUUpRoFU3oA2gWR0CEXctf5ULldX2UKGgGaAloD0MIOuY8Y9+6Y0CUhpRSlGgVTegDaBZHQIRhNEXtSht1fZQoaAZoCWgPQwg6rdug9oBhQJSGlFKUaBVN6ANoFkdAhGkl6iTMaHV9lChoBmgJaA9DCLPQzmkWtmFAlIaUUpRoFU3oA2gWR0CEalaouPFOdX2UKGgGaAloD0MISDfCoqL3YkCUhpRSlGgVTegDaBZHQIRyjg62fCh1fZQoaAZoCWgPQwhgdeRI529nQJSGlFKUaBVN6ANoFkdAhHd8an7523V9lChoBmgJaA9DCEAyHTq9CWBAlIaUUpRoFU3oA2gWR0CEgA1cdHUddX2UKGgGaAloD0MIPKWD9X9cQkCUhpRSlGgVS7loFkdAhIJaw+t8u3V9lChoBmgJaA9DCHyA7ssZQWRAlIaUUpRoFU3oA2gWR0CEhHqkdmxudX2UKGgGaAloD0MIn1kSoKbPZkCUhpRSlGgVTegDaBZHQISG/Zsbedl1fZQoaAZoCWgPQwjexmZHqqFLQJSGlFKUaBVL1mgWR0CEhz9R77bddX2UKGgGaAloD0MIBwd7E0P4R0CUhpRSlGgVS6toFkdAhIlAG8mKInV9lChoBmgJaA9DCOeoo+NqSmZAlIaUUpRoFU3oA2gWR0CEmO4jKPn0dX2UKGgGaAloD0MI4BPrVPm2YkCUhpRSlGgVTegDaBZHQISaFR1oxpN1fZQoaAZoCWgPQwhPkUPETWBjQJSGlFKUaBVN6ANoFkdAhJrJfICEH3V9lChoBmgJaA9DCNYCe0ykfDDAlIaUUpRoFUvSaBZHQISbPomois51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eff01cd1487996e5c02976b645e5d5dec7ddeb41a750308c0b670fbf90a53982
|
3 |
+
size 144023
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd05223c9e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd05223ca70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd05223cb00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd05223cb90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd05223cc20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd05223ccb0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd05223cd40>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd05223cdd0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd05223ce60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd05223cef0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd05223cf80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd052219180>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652852983.740462,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO1PWL5smrg81h6UuoOwJTl6bUu+jTvIOQAAgD8AAIA/ZuLmPVxHFrreEI88sFtqvEqzLLuu9LG8AAAAAAAAAAAQNH++qx5hP6bSS76/6eO+MXMivfaH1j0AAAAAAAAAAB1fdr6ksSg8jbVAOWM/Nbei+ry9u0hguAAAgD8AAIA/jasOvkip8DkSGXG6wk6KNsMBSbsMkY45AACAPwAAgD8AAJc7FAqCuvgcILsi+PqzN43wOkimwjMAAIA/AACAPwBdsz32vA2630aBunOvh7a8LmW6Y3D0NQAAgD8AAAAA/qqvvoao2j4yAMM9brHGvk7mj73Ni2c+AAAAAAAAAABlUIK+6ehGvH7KnztmrZ48e6KyPe4vgb0AAIA/AACAPybmBT64YMg6GBqfOb0xJDfs7J48YZ7AuAAAgD8AAIA/GsCRve55Nj/yZHE8Y5zgvgVEsr2tpve8AAAAAAAAAAAT6Qs+7POMu+a3i7x9qjg8kzrzPcqPa70AAIA/AACAP9PtED64o6u75xevvQ6jCL5KCpk9WgYbPwAAgD8AAIA/ZmnuPOF8gLqaJeQ6CfGwNJLPPjpZ2QO6AACAPwAAgD+zwnk9FGybujLkVjv/2LI2tumzuOI4eLoAAIA/AACAP4oWwj5pTzs/bTPOvIkp8r7WQME+n6vHvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5X6HosDkY0CUhpRSlIwBbJRN6AOMAXSUR0CAql/wRXfZdX2UKGgGaAloD0MI+rg2VIwPTECUhpRSlGgVS9toFkdAgK4FUADJVHV9lChoBmgJaA9DCIKq0asBUGBAlIaUUpRoFU3oA2gWR0CAtq+VTrE+dX2UKGgGaAloD0MI61c6Hx60Y0CUhpRSlGgVTegDaBZHQID4hNVR1ox1fZQoaAZoCWgPQwhR9wFIbaJhQJSGlFKUaBVN6ANoFkdAgRWbJ4jbBXV9lChoBmgJaA9DCBTLLa0GNWZAlIaUUpRoFU3oA2gWR0CBGfsFdLQHdX2UKGgGaAloD0MIixnh7UHoYUCUhpRSlGgVTegDaBZHQIEaKJQ+EAZ1fZQoaAZoCWgPQwicUl4rodhcQJSGlFKUaBVN6ANoFkdAgSYk0rK/23V9lChoBmgJaA9DCM5uLZPhcF9AlIaUUpRoFU3oA2gWR0CBOchUR3/xdX2UKGgGaAloD0MIYVW9/M5CZkCUhpRSlGgVTegDaBZHQIE8mKVII4V1fZQoaAZoCWgPQwhZw0Xu6WZlQJSGlFKUaBVN6ANoFkdAgUjjmKZUk3V9lChoBmgJaA9DCASqfxDJOmRAlIaUUpRoFU3oA2gWR0CBT2WKMvRJdX2UKGgGaAloD0MImgrxSLw+XkCUhpRSlGgVTegDaBZHQIFfUl5WzWx1fZQoaAZoCWgPQwhZ/RGGAStdQJSGlFKUaBVN6ANoFkdAgWIWMS9M9XV9lChoBmgJaA9DCIJ0sWmlaVdAlIaUUpRoFU3oA2gWR0CBbltLL6k7dX2UKGgGaAloD0MIRb3g0xwOYkCUhpRSlGgVTegDaBZHQIFvry4FzMl1fZQoaAZoCWgPQwivldBdkpZiQJSGlFKUaBVN6ANoFkdAgXCl9a2Wp3V9lChoBmgJaA9DCIMxIlFoMWFAlIaUUpRoFU3oA2gWR0CBdIo2GZeBdX2UKGgGaAloD0MIEJGadrHbZUCUhpRSlGgVTegDaBZHQIF9D5XU6Pt1fZQoaAZoCWgPQwgx7DAmfcllQJSGlFKUaBVN6ANoFkdAgb+TK9wm3XV9lChoBmgJaA9DCMNi1LX2t1lAlIaUUpRoFU3oA2gWR0CB3xYwqRU4dX2UKGgGaAloD0MIqYdodIe/YUCUhpRSlGgVTegDaBZHQIHj7LB9Cu51fZQoaAZoCWgPQwi7mdGPBrpjQJSGlFKUaBVN6ANoFkdAgeQbW3BpH3V9lChoBmgJaA9DCK0wfa8hpl5AlIaUUpRoFU3oA2gWR0CB8Qji4rjHdX2UKGgGaAloD0MI4jrGFRdqXUCUhpRSlGgVTegDaBZHQIIEjmfXf651fZQoaAZoCWgPQwjHuU24VylWQJSGlFKUaBVN6ANoFkdAggddvbXYlXV9lChoBmgJaA9DCJW4jnHFKGFAlIaUUpRoFU3oA2gWR0CCEpk3CKrJdX2UKGgGaAloD0MIh1Pm5hs3RkCUhpRSlGgVS/1oFkdAghVY+jdpI3V9lChoBmgJaA9DCIP6ljldIGJAlIaUUpRoFU3oA2gWR0CCGCKa5PM0dX2UKGgGaAloD0MItwvNdZoHYUCUhpRSlGgVTegDaBZHQIIlmUjcEeR1fZQoaAZoCWgPQwiEvYkhORpcQJSGlFKUaBVN6ANoFkdAgigQtSQ5m3V9lChoBmgJaA9DCGgkQiNY02JAlIaUUpRoFU3oA2gWR0CCM6VdonKGdX2UKGgGaAloD0MIVgxXB8DmYUCUhpRSlGgVTegDaBZHQII045o4+8p1fZQoaAZoCWgPQwgG2EenLlxkQJSGlFKUaBVN6ANoFkdAgjXYgA6uGXV9lChoBmgJaA9DCLACfLd5zGNAlIaUUpRoFU3oA2gWR0CCOgEKVpsXdX2UKGgGaAloD0MIqkavBigJXkCUhpRSlGgVTegDaBZHQIJDHaQFLWZ1fZQoaAZoCWgPQwhKsg5HV+hbQJSGlFKUaBVN6ANoFkdAgk7d+5OJtXV9lChoBmgJaA9DCAmp29lXzFFAlIaUUpRoFUvLaBZHQIKXCoXKr7x1fZQoaAZoCWgPQwgi/8wgvrlhQJSGlFKUaBVN6ANoFkdAgqT0Ttb9qHV9lChoBmgJaA9DCDXTvU5qrGNAlIaUUpRoFU3oA2gWR0CCqXzU7Sy/dX2UKGgGaAloD0MI8Q2Fz9biYkCUhpRSlGgVTegDaBZHQIKppUT+NtJ1fZQoaAZoCWgPQwgVHjS77mUhQJSGlFKUaBVL2mgWR0CCyRJyyUs4dX2UKGgGaAloD0MIsYf2sYIHWECUhpRSlGgVTegDaBZHQILJYmu1WsB1fZQoaAZoCWgPQwhC0TyAxQRgQJSGlFKUaBVN6ANoFkdAgswbxd6cAnV9lChoBmgJaA9DCApK0cq99VZAlIaUUpRoFU3oA2gWR0CC1xVUdaMadX2UKGgGaAloD0MIPiMRGkGkY0CUhpRSlGgVTegDaBZHQILZxgPVd5Z1fZQoaAZoCWgPQwh1yM1wAythQJSGlFKUaBVN6ANoFkdAgtx2606YFHV9lChoBmgJaA9DCNY73A4NA0VAlIaUUpRoFUuoaBZHQILiplBhQWN1fZQoaAZoCWgPQwjmXfWA+fthQJSGlFKUaBVN6ANoFkdAgunPgeii7HV9lChoBmgJaA9DCMH/VrJjoF9AlIaUUpRoFU3oA2gWR0CC7EeGwiaBdX2UKGgGaAloD0MIoMA7+fR4YECUhpRSlGgVTegDaBZHQIL3MTpPhyd1fZQoaAZoCWgPQwjLLEKxFRBlQJSGlFKUaBVN6ANoFkdAgvhhy0a6z3V9lChoBmgJaA9DCPRqgNJQNWFAlIaUUpRoFU3oA2gWR0CC+T47A+INdX2UKGgGaAloD0MIQIhkyLFPVUCUhpRSlGgVS7xoFkdAgvtFX7tRenV9lChoBmgJaA9DCJlKP+FsEGFAlIaUUpRoFU3oA2gWR0CC/PyrgflqdX2UKGgGaAloD0MI2UElrmPIOUCUhpRSlGgVS8poFkdAgw/ifpUxVXV9lChoBmgJaA9DCKD/Hrx2el9AlIaUUpRoFU3oA2gWR0CDEJiy6cy4dX2UKGgGaAloD0MIpwLuef50N0CUhpRSlGgVS71oFkdAgxJ9d/rjYXV9lChoBmgJaA9DCGg8EcR5pFFAlIaUUpRoFU3oA2gWR0CDV5aEBbOedX2UKGgGaAloD0MIznADPj98W0CUhpRSlGgVTegDaBZHQINjfx2B8QZ1fZQoaAZoCWgPQwiZYg6CDotkQJSGlFKUaBVN6ANoFkdAg2eadMCcPXV9lChoBmgJaA9DCIgTmE7rVGJAlIaUUpRoFU3oA2gWR0CDiAVLSNOudX2UKGgGaAloD0MIEB/Y8d9yYUCUhpRSlGgVTegDaBZHQIOIZV4oqkN1fZQoaAZoCWgPQwgP0egO4k5kQJSGlFKUaBVN6ANoFkdAg5dC/XXiBHV9lChoBmgJaA9DCGiTwycdqGBAlIaUUpRoFU3oA2gWR0CDmkFY+0PZdX2UKGgGaAloD0MIhnXj3ZHPZkCUhpRSlGgVTegDaBZHQIOdKUX531V1fZQoaAZoCWgPQwirQC0GD1MXwJSGlFKUaBVLwGgWR0CDpF9FWn0kdX2UKGgGaAloD0MI8rOR66a8L8CUhpRSlGgVS8ZoFkdAg6WOm78Nx3V9lChoBmgJaA9DCHb51od1K2FAlIaUUpRoFU3oA2gWR0CDq2uHvc8DdX2UKGgGaAloD0MIxQCJJtCFYkCUhpRSlGgVTegDaBZHQIOt0liSaE11fZQoaAZoCWgPQwg7iQj/ImJLQJSGlFKUaBVLxWgWR0CDssoScslLdX2UKGgGaAloD0MIccyyJ4HPYUCUhpRSlGgVTegDaBZHQIO6ZxBE8aJ1fZQoaAZoCWgPQwjCMGDJVfhWQJSGlFKUaBVN6ANoFkdAg7tU3n6l+HV9lChoBmgJaA9DCCujkc+rDmNAlIaUUpRoFU3oA2gWR0CDv3Uz9CNTdX2UKGgGaAloD0MINbQB2IDYOUCUhpRSlGgVS6poFkdAg8HZo4+8oXV9lChoBmgJaA9DCBTq6SNwr2BAlIaUUpRoFU3oA2gWR0CD0/z90ihWdX2UKGgGaAloD0MI/gxv1uCbWUCUhpRSlGgVTegDaBZHQIPUsQGwA2h1fZQoaAZoCWgPQwj0UNuGURDxv5SGlFKUaBVLz2gWR0CD1dYsd1dPdX2UKGgGaAloD0MIcRsN4C19X0CUhpRSlGgVTegDaBZHQIPWl/tpmEp1fZQoaAZoCWgPQwjggmxZvk9YQJSGlFKUaBVN6ANoFkdAhBsqDsdDIHV9lChoBmgJaA9DCO/lPjkKoBtAlIaUUpRoFUvKaBZHQIQmjsdDIBB1fZQoaAZoCWgPQwga3xeXKhZkQJSGlFKUaBVN6ANoFkdAhCdQqAjIJnV9lChoBmgJaA9DCNczhGMWTGFAlIaUUpRoFU3oA2gWR0CEK4TA31jBdX2UKGgGaAloD0MIH9YbtcK8TECUhpRSlGgVS7RoFkdAhEAgo5PuX3V9lChoBmgJaA9DCKOtSiL77GZAlIaUUpRoFU3oA2gWR0CEXctf5ULldX2UKGgGaAloD0MIOuY8Y9+6Y0CUhpRSlGgVTegDaBZHQIRhNEXtSht1fZQoaAZoCWgPQwg6rdug9oBhQJSGlFKUaBVN6ANoFkdAhGkl6iTMaHV9lChoBmgJaA9DCLPQzmkWtmFAlIaUUpRoFU3oA2gWR0CEalaouPFOdX2UKGgGaAloD0MISDfCoqL3YkCUhpRSlGgVTegDaBZHQIRyjg62fCh1fZQoaAZoCWgPQwhgdeRI529nQJSGlFKUaBVN6ANoFkdAhHd8an7523V9lChoBmgJaA9DCEAyHTq9CWBAlIaUUpRoFU3oA2gWR0CEgA1cdHUddX2UKGgGaAloD0MIPKWD9X9cQkCUhpRSlGgVS7loFkdAhIJaw+t8u3V9lChoBmgJaA9DCHyA7ssZQWRAlIaUUpRoFU3oA2gWR0CEhHqkdmxudX2UKGgGaAloD0MIn1kSoKbPZkCUhpRSlGgVTegDaBZHQISG/Zsbedl1fZQoaAZoCWgPQwjexmZHqqFLQJSGlFKUaBVL1mgWR0CEhz9R77bddX2UKGgGaAloD0MIBwd7E0P4R0CUhpRSlGgVS6toFkdAhIlAG8mKInV9lChoBmgJaA9DCOeoo+NqSmZAlIaUUpRoFU3oA2gWR0CEmO4jKPn0dX2UKGgGaAloD0MI4BPrVPm2YkCUhpRSlGgVTegDaBZHQISaFR1oxpN1fZQoaAZoCWgPQwhPkUPETWBjQJSGlFKUaBVN6ANoFkdAhJrJfICEH3V9lChoBmgJaA9DCNYCe0ykfDDAlIaUUpRoFUvSaBZHQISbPomois51ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fc394c3f94c233778490cffe3fa3e135c2e544124c3bf7cec40095ce80a9bf5
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e32a6e2379602271f62965f2df3e1a1820ca0111fd6ef05fe7e678d484e3d265
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a73677abd26b7a922cae9248d66e9804c8fd5f09785ae2b8b56a0bd23d6a4ad4
|
3 |
+
size 243923
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 258.7792827760048, "std_reward": 20.856224817436782, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-18T06:12:46.205053"}
|