Mohamad Alhajar PRO

malhajar

AI & ML interests

NLP, LLM's (LLama)

Recent Activity

updated a dataset about 7 hours ago
le-leadboard/requests
updated a dataset 16 days ago
malhajar/requests_v0.2
View all activity

Organizations

Orbina AI's profile picture Social Post Explorers's profile picture dev's profile picture Googlers's profile picture le-leadboard's profile picture legml.ai's profile picture

malhajar's activity

reacted to their post with ❤️🔥 4 months ago
view post
Post
4637
🇫🇷 Lancement officiel de l'OpenLLM French Leaderboard : initiative open-source pour référencer l’évaluation des LLMs francophones

Après beaucoup d’efforts et de sueurs avec Alexandre Lavallee, nous sommes ravis d’annoncer que le OpenLLMFrenchLeaderboard est en ligne sur Hugging Face (space url: le-leadboard/OpenLLMFrenchLeaderboard) la toute première plateforme dédiée à l’évaluation des grands modèles de langage (LLM) en français. 🇫🇷✨

Ce projet de longue haleine est avant tout une œuvre de passion mais surtout une nécessité absolue. Il devient urgent et vital d'oeuvrer à plus de transparence dans ce domaine stratégique des LLM dits multilingues. La première pièce à l'édifice est donc la mise en place d'une évaluation systématique et systémique des modèles actuels et futurs.

Votre modèle IA français est-il prêt à se démarquer ? Soumettez le dans notre espace, et voyez comment vous vous comparez par rapport aux autres modèles.

❓ Comment ça marche :
Soumettez votre LLM français pour évaluation, et nous le testerons sur des benchmarks de référence spécifiquement adaptés pour la langue française — notre suite de benchmarks comprend :

- BBH-fr : Raisonnement complexe
- IFEval-fr : Suivi d'instructions
- GPQA-fr : Connaissances avancées
- MUSR-fr : Raisonnement narratif
- MATH_LVL5-fr : Capacités mathématiques
- MMMLU-fr : Compréhension multitâche

Le processus est encore manuel, mais nous travaillons sur son automatisation, avec le soutien de la communauté Hugging Face.

@clem , on se prépare pour une mise à niveau de l’espace ? 😏👀

Ce n'est pas qu'une question de chiffres—il s'agit de créer une IA qui reflète vraiment notre langue, notre culture et nos valeurs. OpenLLMFrenchLeaderboard est notre contribution personnelle pour façonner l'avenir des LLM en France.
  • 1 reply
·
posted an update 4 months ago
view post
Post
4637
🇫🇷 Lancement officiel de l'OpenLLM French Leaderboard : initiative open-source pour référencer l’évaluation des LLMs francophones

Après beaucoup d’efforts et de sueurs avec Alexandre Lavallee, nous sommes ravis d’annoncer que le OpenLLMFrenchLeaderboard est en ligne sur Hugging Face (space url: le-leadboard/OpenLLMFrenchLeaderboard) la toute première plateforme dédiée à l’évaluation des grands modèles de langage (LLM) en français. 🇫🇷✨

Ce projet de longue haleine est avant tout une œuvre de passion mais surtout une nécessité absolue. Il devient urgent et vital d'oeuvrer à plus de transparence dans ce domaine stratégique des LLM dits multilingues. La première pièce à l'édifice est donc la mise en place d'une évaluation systématique et systémique des modèles actuels et futurs.

Votre modèle IA français est-il prêt à se démarquer ? Soumettez le dans notre espace, et voyez comment vous vous comparez par rapport aux autres modèles.

❓ Comment ça marche :
Soumettez votre LLM français pour évaluation, et nous le testerons sur des benchmarks de référence spécifiquement adaptés pour la langue française — notre suite de benchmarks comprend :

- BBH-fr : Raisonnement complexe
- IFEval-fr : Suivi d'instructions
- GPQA-fr : Connaissances avancées
- MUSR-fr : Raisonnement narratif
- MATH_LVL5-fr : Capacités mathématiques
- MMMLU-fr : Compréhension multitâche

Le processus est encore manuel, mais nous travaillons sur son automatisation, avec le soutien de la communauté Hugging Face.

@clem , on se prépare pour une mise à niveau de l’espace ? 😏👀

Ce n'est pas qu'une question de chiffres—il s'agit de créer une IA qui reflète vraiment notre langue, notre culture et nos valeurs. OpenLLMFrenchLeaderboard est notre contribution personnelle pour façonner l'avenir des LLM en France.
  • 1 reply
·
reacted to vladbogo's post with 👀 11 months ago
view post
Post
xAI releases the weights for Grok-1. Apparently it's a 314B MoE with 25% of the weights active on a given token.

Blog: https://x.ai/blog/grok-os
Code: https://github.com/xai-org/grok
Model: xai-org/grok-1
Weights: magnet:?xt=urn:btih:5f96d43576e3d386c9ba65b883210a393b68210e&tr=https%3A%2F%2Facademictorrents.com%2Fannounce.php&tr=udp%3A%2F%2Ftracker.coppersurfer.tk%3A6969&tr=udp%3A%2F%2Ftracker.opentrackr.org%3A1337%2Fannounce
  • 2 replies
·
reacted to akhaliq's post with 👍 12 months ago
view post
Post
GaLore

Memory-Efficient LLM Training by Gradient Low-Rank Projection

GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection (2403.03507)

Training Large Language Models (LLMs) presents significant memory challenges, predominantly due to the growing size of weights and optimizer states. Common memory-reduction approaches, such as low-rank adaptation (LoRA), add a trainable low-rank matrix to the frozen pre-trained weight in each layer, reducing trainable parameters and optimizer states. However, such approaches typically underperform training with full-rank weights in both pre-training and fine-tuning stages since they limit the parameter search to a low-rank subspace and alter the training dynamics, and further, may require full-rank warm start. In this work, we propose Gradient Low-Rank Projection (GaLore), a training strategy that allows full-parameter learning but is more memory-efficient than common low-rank adaptation methods such as LoRA. Our approach reduces memory usage by up to 65.5% in optimizer states while maintaining both efficiency and performance for pre-training on LLaMA 1B and 7B architectures with C4 dataset with up to 19.7B tokens, and on fine-tuning RoBERTa on GLUE tasks. Our 8-bit GaLore further reduces optimizer memory by up to 82.5% and total training memory by 63.3%, compared to a BF16 baseline. Notably, we demonstrate, for the first time, the feasibility of pre-training a 7B model on consumer GPUs with 24GB memory (e.g., NVIDIA RTX 4090) without model parallel, checkpointing, or offloading strategies.
posted an update 12 months ago
view post
Post
🚀 Major Update: OpenLLM Turkish Benchmarks & Leaderboard Launch! 🚀

Exciting news for the Hugging Face community! I'm thrilled to announce the launch of my fully translated OpenLLM Benchmarks in Turkish, accompanied by my innovative leaderboard, ready to highlight the capabilities of Turkish language models. This marks a landmark achievement in supporting and advancing Turkish AI research.

What’s New:

📚 Complete OpenLLM Benchmarks in Turkish: Dive into my comprehensive suite of benchmarks, now available for thorough evaluation of Turkish LLMs.

📈 Live Leaderboard: Explore my live leaderboard showcasing the progress and excellence in Turkish language AI. (Note: Current evaluations are conducted manually but are consistently updated.)

Partnership Invitation:

🤝 Join My Automation Mission: I'm on the lookout for partners to help transition from manual to automated leaderboard evaluations. Your support can catalyze real-time, streamlined assessments, pushing Turkish LLMs to new heights.
Key Resources:

📚 Explore the Turkish OpenLLM Collection: ( malhajar/openllmturkishleadboard-datasets-65e5854490a87c0f2670ec18)

🏆 Discover the Leaderboard: ( malhajar/OpenLLMTurkishLeaderboard)

Get Involved:

💡 Share Your Models: Contribute to the burgeoning field of Turkish AI, showcasing your work and contributing to the collective progress.

Let's unite to propel Turkish AI forward and set a precedent for the global community. Stay tuned as I plan to expand these efforts to other languages, further enriching the AI ecosystem!

Join this groundbreaking endeavor and let’s shape the future of AI together! 🌐

#TurkishLLM #AI #MachineLearning #LanguageModels #OpenLLM #HuggingFace