update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: segformer-b0-finetuned-segments-sidewalk-4
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# segformer-b0-finetuned-segments-sidewalk-4
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.5207
|
20 |
+
- Mean Iou: 0.1023
|
21 |
+
- Mean Accuracy: 0.1567
|
22 |
+
- Overall Accuracy: 0.6612
|
23 |
+
- Per Category Iou: [0.0, 0.37997208823402434, 0.7030895600821837, 0.0, 0.0020740824048893942, 0.0006611109803275343, 0.0, 0.0009644717061794479, 0.0, 0.0, 0.44780560238339745, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4962679673706645, 0.0, 0.008267299447856608, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6719286019431624, 0.1932540547332544, 0.6762198255750292, 0.0, 0.0, 0.0003312368464636427, 0.0]
|
24 |
+
- Per Category Accuracy: [nan, 0.7085417733756095, 0.8643251797889624, 0.0, 0.0020922282164545967, 0.0006691672739475508, nan, 0.0009725011389865425, 0.0, 0.0, 0.9224475476880146, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7984415122785299, 0.0, 0.008394275137866055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9294223049507054, 0.2306496542338313, 0.7045666997791757, 0.0, 0.0, 0.0003315891206418271, 0.0]
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 6e-05
|
44 |
+
- train_batch_size: 32
|
45 |
+
- eval_batch_size: 32
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 2
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
55 |
+
| 2.8255 | 1.0 | 25 | 3.0220 | 0.0892 | 0.1429 | 0.6352 | [0.0, 0.3631053229188519, 0.6874502125236047, 0.0, 0.012635239862746197, 0.001133215250040838, 0.0, 0.00463024415429387, 2.6557099661207286e-05, 0.0, 0.3968535016422742, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4820466790242289, 0.0, 0.00693999220077067, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6134928158666486, 0.05160593984758798, 0.5016270369795023, 0.0, 0.0, 0.00023524914354608678, 0.0] | [nan, 0.6625398055826, 0.851744092156527, 0.0, 0.01307675614921835, 0.001170877257777663, nan, 0.004771009467501389, 2.6941417811356193e-05, 0.0, 0.9316713675735513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7310221003907382, 0.0, 0.0070371168820434, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.948375993368795, 0.056265031783493576, 0.5061367774453964, 0.0, 0.0, 0.00023723449281691698, 0.0] |
|
56 |
+
| 2.5443 | 2.0 | 50 | 2.5207 | 0.1023 | 0.1567 | 0.6612 | [0.0, 0.37997208823402434, 0.7030895600821837, 0.0, 0.0020740824048893942, 0.0006611109803275343, 0.0, 0.0009644717061794479, 0.0, 0.0, 0.44780560238339745, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4962679673706645, 0.0, 0.008267299447856608, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6719286019431624, 0.1932540547332544, 0.6762198255750292, 0.0, 0.0, 0.0003312368464636427, 0.0] | [nan, 0.7085417733756095, 0.8643251797889624, 0.0, 0.0020922282164545967, 0.0006691672739475508, nan, 0.0009725011389865425, 0.0, 0.0, 0.9224475476880146, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7984415122785299, 0.0, 0.008394275137866055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9294223049507054, 0.2306496542338313, 0.7045666997791757, 0.0, 0.0, 0.0003315891206418271, 0.0] |
|
57 |
+
|
58 |
+
|
59 |
+
### Framework versions
|
60 |
+
|
61 |
+
- Transformers 4.19.2
|
62 |
+
- Pytorch 1.11.0+cu102
|
63 |
+
- Datasets 2.2.2
|
64 |
+
- Tokenizers 0.12.1
|