--- tags: - feature-extraction language: en datasets: - SciDocs - s2orc metrics: - F1 - accuracy - map - ndcg license: mit --- ## SciNCL SciNCL is a pre-trained BERT language model to generate document-level embeddings of research papers. It uses the citation graph neighborhood to generate samples for contrastive learning. Prior to the contrastive training, the model is initialized with weights from [scibert-scivocab-uncased](https://huggingface.co/allenai/scibert_scivocab_uncased). The underlying citation embeddings are trained on the [S2ORC citation graph](https://github.com/allenai/s2orc). Paper: [Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings (EMNLP 2022 paper)](https://arxiv.org/abs/2202.06671). Code: https://github.com/malteos/scincl PubMedNCL: If you are working with biomedical papers, try out the [PubMedNCL](https://huggingface.co/malteos/PubMedNCL) model. ## How to use the pretrained model ```python from transformers import AutoTokenizer, AutoModel # load model and tokenizer tokenizer = AutoTokenizer.from_pretrained('malteos/scincl') model = AutoModel.from_pretrained('malteos/scincl') papers = [{'title': 'BERT', 'abstract': 'We introduce a new language representation model called BERT'}, {'title': 'Attention is all you need', 'abstract': ' The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'}] # concatenate title and abstract with [SEP] token title_abs = [d['title'] + tokenizer.sep_token + (d.get('abstract') or '') for d in papers] # preprocess the input inputs = tokenizer(title_abs, padding=True, truncation=True, return_tensors="pt", max_length=512) # inference result = model(**inputs) # take the first token ([CLS] token) in the batch as the embedding embeddings = result.last_hidden_state[:, 0, :] ``` ## Triplet Mining Parameters | **Setting** | **Value** | |-------------------------|--------------------| | seed | 4 | | triples_per_query | 5 | | easy_positives_count | 5 | | easy_positives_strategy | 5 | | easy_positives_k | 20-25 | | easy_negatives_count | 3 | | easy_negatives_strategy | random_without_knn | | hard_negatives_count | 2 | | hard_negatives_strategy | knn | | hard_negatives_k | 3998-4000 | ## SciDocs Results These model weights are the ones that yielded the best results on SciDocs (`seed=4`). In the paper we report the SciDocs results as mean over ten seeds. | **model** | **mag-f1** | **mesh-f1** | **co-view-map** | **co-view-ndcg** | **co-read-map** | **co-read-ndcg** | **cite-map** | **cite-ndcg** | **cocite-map** | **cocite-ndcg** | **recomm-ndcg** | **recomm-P@1** | **Avg** | |-------------------|-----------:|------------:|----------------:|-----------------:|----------------:|-----------------:|-------------:|--------------:|---------------:|----------------:|----------------:|---------------:|--------:| | Doc2Vec | 66.2 | 69.2 | 67.8 | 82.9 | 64.9 | 81.6 | 65.3 | 82.2 | 67.1 | 83.4 | 51.7 | 16.9 | 66.6 | | fasttext-sum | 78.1 | 84.1 | 76.5 | 87.9 | 75.3 | 87.4 | 74.6 | 88.1 | 77.8 | 89.6 | 52.5 | 18 | 74.1 | | SGC | 76.8 | 82.7 | 77.2 | 88 | 75.7 | 87.5 | 91.6 | 96.2 | 84.1 | 92.5 | 52.7 | 18.2 | 76.9 | | SciBERT | 79.7 | 80.7 | 50.7 | 73.1 | 47.7 | 71.1 | 48.3 | 71.7 | 49.7 | 72.6 | 52.1 | 17.9 | 59.6 | | SPECTER | 82 | 86.4 | 83.6 | 91.5 | 84.5 | 92.4 | 88.3 | 94.9 | 88.1 | 94.8 | 53.9 | 20 | 80 | | SciNCL (10 seeds) | 81.4 | 88.7 | 85.3 | 92.3 | 87.5 | 93.9 | 93.6 | 97.3 | 91.6 | 96.4 | 53.9 | 19.3 | 81.8 | | **SciNCL (seed=4)** | 81.2 | 89.0 | 85.3 | 92.2 | 87.7 | 94.0 | 93.6 | 97.4 | 91.7 | 96.5 | 54.3 | 19.6 | 81.9 | Additional evaluations are available in the paper. ## License MIT