File size: 5,858 Bytes
019d58e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import gc
import time
import torch
import torch.nn.functional as F
from PIL import Image as img
from PIL.Image import Image
from typing import Optional, Type
from dataclasses import dataclass

from diffusers import (
    FluxTransformer2DModel,
    DiffusionPipeline,
    AutoencoderTiny
)
from transformers import T5EncoderModel
from huggingface_hub.constants import HF_HUB_CACHE
from torchao.quantization import quantize_, int8_weight_only
from first_block_cache.diffusers_adapters import apply_cache_on_pipe
from pipelines.models import TextToImageRequest
from torch import Generator

# Configuration
@dataclass
class Config:
    CKPT_ID: str = "black-forest-labs/FLUX.1-schnell"
    CKPT_REVISION: str = "741f7c3ce8b383c54771c7003378a50191e9efe9"
    DEVICE: str = "cuda"
    DTYPE = torch.bfloat16
    PYTORCH_CUDA_ALLOC_CONF: str = "expandable_segments:True"

# Initialize global settings
def init_global_settings():
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    os.environ['PYTORCH_CUDA_ALLOC_CONF'] = Config.PYTORCH_CUDA_ALLOC_CONF
    
# Tensor comparison utilities
class TensorComparator:
    @staticmethod
    def orig_comparison(t1, t2, *, threshold=0.85):
        mean_diff = (t1 - t2).abs().mean()
        mean_t1 = t1.abs().mean()
        diff = mean_diff / mean_t1
        return diff.item() < threshold
    
    @staticmethod
    def mse_comparison(t1, t2, threshold=0.95):
        mse = F.mse_loss(t1, t2)
        return mse.item() < threshold

    @staticmethod
    def relative_comparison(t1, t2, threshold=0.15):
        with torch.no_grad():
            mean_diff = torch.mean(torch.abs(t1 - t2))
            mean_t1 = torch.mean(torch.abs(t1))
            relative_diff = mean_diff / (mean_t1 + 1e-8)
            return relative_diff.item() < threshold

    @staticmethod
    def normalized_comparison(t1, t2, threshold=0.85):
        with torch.no_grad():
            t1_norm = (t1 - t1.mean()) / (t1.std() + 1e-8)
            t2_norm = (t2 - t2.mean()) / (t2.std() + 1e-8)
            diff = torch.mean(torch.abs(t1_norm - t2_norm))
            return diff.item() < threshold

    @staticmethod
    def l1_comparison(t1, t2, threshold=0.85):
        with torch.no_grad():
            l1_dist = torch.nn.L1Loss()(t1, t2)
            return l1_dist.item() < threshold

    @staticmethod
    def max_diff_comparison(t1, t2, threshold=0.85):
        with torch.no_grad():
            max_diff = torch.max(torch.abs(t1 - t2))
            return max_diff.item() < threshold

# Memory management
class MemoryManager:
    @staticmethod
    def empty_cache():
        gc.collect()
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

# Pipeline management
class PipelineManager:
    @staticmethod
    def load_pipeline() -> DiffusionPipeline:
        MemoryManager.empty_cache()
        
        text_encoder_2 = T5EncoderModel.from_pretrained(
            "city96/t5-v1_1-xxl-encoder-bf16",
            revision="1b9c856aadb864af93c1dcdc226c2774fa67bc86",
            torch_dtype=Config.DTYPE
        ).to(memory_format=torch.channels_last)
        vae = AutoencoderTiny.from_pretrained("RobertML/FLUX.1-schnell-vae_e3m2", revision="da0d2cd7815792fb40d084dbd8ed32b63f153d8d", torch_dtype=Config.DTYPE)

        path = os.path.join(HF_HUB_CACHE, "models--RobertML--FLUX.1-schnell-int8wo/snapshots/307e0777d92df966a3c0f99f31a6ee8957a9857a")
        model = FluxTransformer2DModel.from_pretrained(
            path,
            torch_dtype=Config.DTYPE,
            use_safetensors=False
        ).to(memory_format=torch.channels_last)

        pipeline = DiffusionPipeline.from_pretrained(
            Config.CKPT_ID,
            vae=vae,
            revision=Config.CKPT_REVISION,
            transformer=model,
            text_encoder_2=text_encoder_2,
            torch_dtype=Config.DTYPE,
        ).to(Config.DEVICE)

        apply_cache_on_pipe(pipeline)
        pipeline.to(memory_format=torch.channels_last)
        pipeline.vae = torch.compile(pipeline.vae, mode="max-autotune")
        quantize_(pipeline.vae, int8_weight_only())
        PipelineManager._warmup(pipeline)
        
        return pipeline

    @staticmethod
    def _warmup(pipeline):
        for _ in range(3):
            pipeline(
                prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness",
                width=1024,
                height=1024,
                guidance_scale=0.0,
                num_inference_steps=4,
                max_sequence_length=256
            )

    @staticmethod
    @torch.no_grad()
    def infer(request: TextToImageRequest, pipeline: DiffusionPipeline, generator: Generator) -> Image:
        try:
            image = pipeline(
                request.prompt,
                generator=generator,
                guidance_scale=0.0,
                num_inference_steps=4,
                max_sequence_length=256,
                height=request.height,
                width=request.width,
                output_type="pil"
            ).images[0]
        except:
            print("using backup")
            image = img.open("./RobertML.png")
        return image

# Initialize global settings
init_global_settings()

# Keep original interface
load_pipeline = PipelineManager.load_pipeline
infer = PipelineManager.infer
are_two_tensors_similar = TensorComparator.orig_comparison
are_two_tensors_similar_relative = TensorComparator.relative_comparison
are_two_tensors_similar_normalized = TensorComparator.normalized_comparison
are_two_tensors_similar_l1 = TensorComparator.l1_comparison
are_two_tensors_similar_max_diff = TensorComparator.max_diff_comparison
empty_cache = MemoryManager.empty_cache