|
import functools |
|
import unittest |
|
from typing import Any, Dict, Optional, Union |
|
|
|
import torch |
|
from diffusers import DiffusionPipeline, HunyuanVideoTransformer3DModel |
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput |
|
from diffusers.utils import logging, scale_lora_layers, unscale_lora_layers, USE_PEFT_BACKEND |
|
|
|
from para_attn.first_block_cache import utils |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def apply_cache_on_transformer( |
|
transformer: HunyuanVideoTransformer3DModel, |
|
*, |
|
residual_diff_threshold=0.06, |
|
): |
|
cached_transformer_blocks = torch.nn.ModuleList( |
|
[ |
|
utils.CachedTransformerBlocks( |
|
transformer.transformer_blocks + transformer.single_transformer_blocks, |
|
transformer=transformer, |
|
residual_diff_threshold=residual_diff_threshold, |
|
) |
|
] |
|
) |
|
dummy_single_transformer_blocks = torch.nn.ModuleList() |
|
|
|
original_forward = transformer.forward |
|
|
|
@functools.wraps(transformer.__class__.forward) |
|
def new_forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
timestep: torch.LongTensor, |
|
encoder_hidden_states: torch.Tensor, |
|
encoder_attention_mask: torch.Tensor, |
|
pooled_projections: torch.Tensor, |
|
guidance: torch.Tensor = None, |
|
attention_kwargs: Optional[Dict[str, Any]] = None, |
|
return_dict: bool = True, |
|
**kwargs, |
|
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: |
|
with unittest.mock.patch.object( |
|
self, |
|
"transformer_blocks", |
|
cached_transformer_blocks, |
|
), unittest.mock.patch.object( |
|
self, |
|
"single_transformer_blocks", |
|
dummy_single_transformer_blocks, |
|
): |
|
if getattr(self, "_is_parallelized", False): |
|
return original_forward( |
|
hidden_states, |
|
timestep, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
pooled_projections, |
|
guidance=guidance, |
|
attention_kwargs=attention_kwargs, |
|
return_dict=return_dict, |
|
**kwargs, |
|
) |
|
else: |
|
if attention_kwargs is not None: |
|
attention_kwargs = attention_kwargs.copy() |
|
lora_scale = attention_kwargs.pop("scale", 1.0) |
|
else: |
|
lora_scale = 1.0 |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
else: |
|
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: |
|
logger.warning( |
|
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." |
|
) |
|
|
|
batch_size, num_channels, num_frames, height, width = hidden_states.shape |
|
p, p_t = self.config.patch_size, self.config.patch_size_t |
|
post_patch_num_frames = num_frames // p_t |
|
post_patch_height = height // p |
|
post_patch_width = width // p |
|
|
|
|
|
image_rotary_emb = self.rope(hidden_states) |
|
|
|
|
|
temb = self.time_text_embed(timestep, guidance, pooled_projections) |
|
hidden_states = self.x_embedder(hidden_states) |
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states, timestep, encoder_attention_mask) |
|
|
|
encoder_hidden_states = encoder_hidden_states[:, encoder_attention_mask[0].bool()] |
|
|
|
|
|
hidden_states, encoder_hidden_states = self.call_transformer_blocks( |
|
hidden_states, encoder_hidden_states, temb, None, image_rotary_emb |
|
) |
|
|
|
|
|
hidden_states = self.norm_out(hidden_states, temb) |
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
hidden_states = hidden_states.reshape( |
|
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, -1, p_t, p, p |
|
) |
|
hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7) |
|
hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3) |
|
|
|
hidden_states = hidden_states.to(timestep.dtype) |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (hidden_states,) |
|
|
|
return Transformer2DModelOutput(sample=hidden_states) |
|
|
|
transformer.forward = new_forward.__get__(transformer) |
|
|
|
def call_transformer_blocks(self, hidden_states, encoder_hidden_states, *args, **kwargs): |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} |
|
|
|
for block in self.transformer_blocks: |
|
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
encoder_hidden_states, |
|
*args, |
|
**kwargs, |
|
**ckpt_kwargs, |
|
) |
|
|
|
for block in self.single_transformer_blocks: |
|
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
encoder_hidden_states, |
|
*args, |
|
**kwargs, |
|
**ckpt_kwargs, |
|
) |
|
|
|
else: |
|
for block in self.transformer_blocks: |
|
hidden_states, encoder_hidden_states = block(hidden_states, encoder_hidden_states, *args, **kwargs) |
|
|
|
for block in self.single_transformer_blocks: |
|
hidden_states, encoder_hidden_states = block(hidden_states, encoder_hidden_states, *args, **kwargs) |
|
|
|
return hidden_states, encoder_hidden_states |
|
|
|
transformer.call_transformer_blocks = call_transformer_blocks.__get__(transformer) |
|
|
|
return transformer |
|
|
|
|
|
def apply_cache_on_pipe( |
|
pipe: DiffusionPipeline, |
|
*, |
|
shallow_patch: bool = False, |
|
**kwargs, |
|
): |
|
original_call = pipe.__class__.__call__ |
|
|
|
if not getattr(original_call, "_is_cached", False): |
|
|
|
@functools.wraps(original_call) |
|
def new_call(self, *args, **kwargs): |
|
with utils.cache_context(utils.create_cache_context()): |
|
return original_call(self, *args, **kwargs) |
|
|
|
pipe.__class__.__call__ = new_call |
|
|
|
new_call._is_cached = True |
|
|
|
if not shallow_patch: |
|
apply_cache_on_transformer(pipe.transformer, **kwargs) |
|
|
|
pipe._is_cached = True |
|
|
|
return pipe |
|
|