from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny from diffusers.image_processor import VaeImageProcessor from diffusers.schedulers import FlowMatchEulerDiscreteScheduler from huggingface_hub.constants import HF_HUB_CACHE from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel import torch import torch._dynamo import gc from PIL import Image as img from PIL.Image import Image from pipelines.models import TextToImageRequest from torch import Generator import time from diffusers import FluxTransformer2DModel, DiffusionPipeline from torchao.quantization import quantize_, int8_weight_only, fpx_weight_only import os os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True" torch._dynamo.config.suppress_errors = True Pipeline = None ckpt_id = "black-forest-labs/FLUX.1-schnell" ckpt_revision = "741f7c3ce8b383c54771c7003378a50191e9efe9" def empty_cache(): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() def load_pipeline() -> Pipeline: empty_cache() dtype, device = torch.bfloat16, "cuda" text_encoder_2 = T5EncoderModel.from_pretrained( "city96/t5-v1_1-xxl-encoder-bf16", revision = "1b9c856aadb864af93c1dcdc226c2774fa67bc86", torch_dtype=torch.bfloat16 ).to(memory_format=torch.channels_last) path = os.path.join(HF_HUB_CACHE, "models--RobertML--FLUX.1-schnell-int8wo/snapshots/307e0777d92df966a3c0f99f31a6ee8957a9857a") model = FluxTransformer2DModel.from_pretrained(path, torch_dtype=dtype, use_safetensors=False).to(memory_format=torch.channels_last) pipeline = FluxPipeline.from_pretrained( ckpt_id, revision=ckpt_revision, transformer=model, text_encoder_2=text_encoder_2, torch_dtype=dtype, ).to(device) pipeline.transformer = torch.compile(pipeline.transformer, mode="reduce-overhead") quantize_(pipeline.vae, int8_weight_only()) for _ in range(5): pipeline(prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256) empty_cache() return pipeline @torch.no_grad() def infer(request: TextToImageRequest, pipeline: Pipeline, generator: Generator) -> Image: image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil").images[0] return(image)