Update src/pipeline.py
Browse files- src/pipeline.py +2 -2
src/pipeline.py
CHANGED
@@ -40,7 +40,7 @@ def load_pipeline(pipeline=None) -> StableDiffusionXLPipeline:
|
|
40 |
deepcache_output = pipeline(prompt=prompt, output_type="pil", num_inference_steps=20, generator=generator, guidance_scale=5.0)
|
41 |
deepcache_output[0][0].save(f"./../retrained_final_image_croissant_orig_{num}.png")
|
42 |
|
43 |
-
pipeline.scheduler.prepare_loss()
|
44 |
|
45 |
for _ in range(1):
|
46 |
deepcache_output = pipeline(prompt=prompt, output_type="pil", num_inference_steps=20, generator=generator, guidance_scale=5.0)
|
@@ -54,7 +54,7 @@ def load_pipeline(pipeline=None) -> StableDiffusionXLPipeline:
|
|
54 |
optimizer = torch.optim.Adam(loss_model.parameters(), lr=1e-4)
|
55 |
|
56 |
# Generate the dataset by running the diffusion process
|
57 |
-
num_inference_steps =
|
58 |
generator = torch.manual_seed(0)
|
59 |
|
60 |
# Run the pipeline to generate samples and collect diffusion paths
|
|
|
40 |
deepcache_output = pipeline(prompt=prompt, output_type="pil", num_inference_steps=20, generator=generator, guidance_scale=5.0)
|
41 |
deepcache_output[0][0].save(f"./../retrained_final_image_croissant_orig_{num}.png")
|
42 |
|
43 |
+
# pipeline.scheduler.prepare_loss()
|
44 |
|
45 |
for _ in range(1):
|
46 |
deepcache_output = pipeline(prompt=prompt, output_type="pil", num_inference_steps=20, generator=generator, guidance_scale=5.0)
|
|
|
54 |
optimizer = torch.optim.Adam(loss_model.parameters(), lr=1e-4)
|
55 |
|
56 |
# Generate the dataset by running the diffusion process
|
57 |
+
num_inference_steps = 20
|
58 |
generator = torch.manual_seed(0)
|
59 |
|
60 |
# Run the pipeline to generate samples and collect diffusion paths
|