denisealg's picture
Upload model
10e12d3 verified
raw
history blame
3.57 kB
from transformers import XLMRobertaForSequenceClassification, XLMRobertaConfig
from torch.nn import MSELoss, CrossEntropyLoss, BCEWithLogitsLoss
from typing import Optional, Union, Tuple
from transformers.modeling_outputs import SequenceClassifierOutput
import torch
from torch.nn import Linear
class CustomXLMRobertaModelForSequenceClassification(XLMRobertaForSequenceClassification):
config_class = XLMRobertaConfig
def __init__(self, config):
super().__init__(config)
self.final_classifier = Linear(config.hidden_size, config.num_labels)
self.init_weights()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs_sentence = self.roberta(input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True)
sequence_output_sentence = outputs_sentence["last_hidden_state"][:, 0, :]
logits = self.final_classifier(sequence_output_sentence)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,)
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits
)