manu
/

ColPali
Safetensors
English
vidore
manu commited on
Commit
47b0204
·
verified ·
1 Parent(s): a4c3c6a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -14,7 +14,7 @@ It was introduced in the paper [ColPali: Efficient Document Retrieval with Visio
14
 
15
  ## Model Description
16
 
17
- This model is trained with an extra 100k samples from the Docmatix dataset !
18
 
19
  This model is built iteratively starting from an off-the-shelf [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384) model.
20
  We finetuned it to create [BiSigLIP](https://huggingface.co/vidore/bisiglip) and fed the patch-embeddings output by SigLIP to an LLM, [PaliGemma-3B](https://huggingface.co/google/paligemma-3b-mix-448) to create [BiPali](https://huggingface.co/vidore/bipali).
@@ -58,7 +58,7 @@ def main() -> None:
58
  """Example script to run inference with ColPali"""
59
 
60
  # Load model
61
- model_name = "vidore/colpali"
62
  model = ColPali.from_pretrained("google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda").eval()
63
  model.load_adapter(model_name)
64
  processor = AutoProcessor.from_pretrained(model_name)
 
14
 
15
  ## Model Description
16
 
17
+ This model is trained with an extra 150k samples from the Docmatix dataset !
18
 
19
  This model is built iteratively starting from an off-the-shelf [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384) model.
20
  We finetuned it to create [BiSigLIP](https://huggingface.co/vidore/bisiglip) and fed the patch-embeddings output by SigLIP to an LLM, [PaliGemma-3B](https://huggingface.co/google/paligemma-3b-mix-448) to create [BiPali](https://huggingface.co/vidore/bipali).
 
58
  """Example script to run inference with ColPali"""
59
 
60
  # Load model
61
+ model_name = "manu/colpali-3b-mix-448-docmatix"
62
  model = ColPali.from_pretrained("google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda").eval()
63
  model.load_adapter(model_name)
64
  processor = AutoProcessor.from_pretrained(model_name)