File size: 5,017 Bytes
5f4a039 d292306 5f4a039 d292306 5f4a039 d292306 7d6af58 d292306 8ed74b3 d292306 8ed74b3 d292306 8ed74b3 d292306 dc516d0 8ed74b3 dc516d0 8ed74b3 dc516d0 8ed74b3 dc516d0 d292306 7d6af58 d292306 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
---
# Margin-aware Preference Optimization for Aligning Diffusion Models without Reference
<div align="center">
<img src="https://github.com/mapo-t2i/mapo/blob/main/assets/mapo_overview.png?raw=true" width=750/>
</div><br>
We propose **MaPO**, a reference-free, sample-efficient, memory-friendly alignment technique for text-to-image diffusion models. For more details on the technique, please refer to our paper [here](https://arxiv.org/abs/2406.06424).
## Developed by
* Jiwoo Hong<sup>*</sup> (KAIST AI)
* Sayak Paul<sup>*</sup> (Hugging Face)
* Noah Lee (KAIST AI)
* Kashif Rasul (Hugging Face)
* James Thorne (KAIST AI)
* Jongheon Jeong (Korea University)
## Dataset
This model was fine-tuned from [Stable Diffusion XL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) on the [yuvalkirstain/pickapic_v2](mhttps://huggingface.co/datasets/yuvalkirstain/pickapic_v2) dataset.
## Training Code
Refer to our code repository [here](https://github.com/mapo-t2i/mapo).
## Qualitative Comparison
<div align="center">
<img src="assets/comparison.png" width=750/>
</div>
## Results
Below we report some quantitative metrics and use them to compare MaPO to existing models:
<style>
table {
width: 100%;
border-collapse: collapse;
}
th, td {
border: 1px solid #000;
padding: 8px;
text-align: center;
}
th {
background-color: #808080;
}
.ours {
font-style: italic;
}
</style>
<table>
<caption>Average score for Aesthetic, HPS v2.1, and PickScore</caption>
<thead>
<tr>
<th></th>
<th>Aesthetic</th>
<th>HPS v2.1</th>
<th>Pickscore</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDXL</td>
<td>6.03</td>
<td>30.0</td>
<td>22.4</td>
</tr>
<tr>
<td>SFT<sub>Chosen</sub></td>
<td>5.95</td>
<td>29.6</td>
<td>22.0</td>
</tr>
<tr>
<td>Diffusion-DPO</td>
<td>6.03</td>
<td>31.1</td>
<td><b>22.7<b/></td>
</tr>
<tr>
<td><b>MaPO (Ours)<b/></td>
<td><b>6.17<b/></td>
<td><b>31.2<b/></td>
<td>22.5</td>
</tr>
</tbody>
</table>
We evaluated this checkpoint in the Imgsys public benchmark. MaPO was able to outperform or match 21 out of 25 state-of-the-art text-to-image diffusion models by ranking 7th on the leaderboard at the time of writing, compared to Diffusion-DPO’s 20th place, while also consuming 14.5% less wall-clock training time on adapting Pick-a-Pic v2. We appreciate the imgsys team for helping us get the human preference data.
<div align="center">
<img src="https://mapo-t2i.github.io/static/images/imgsys.png" width=750/>
</div>
The table below reports memory efficiency of MaPO, making it a better alternative for alignment fine-tuning of diffusion models:
<table>
<caption>Computational costs of Diffusion-DPO and MaPO</caption>
<thead>
<tr>
<th></th>
<th>Diffusion-DPO</th>
<th>MaPO <span class="ours">(Ours)</span></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (↓)</td>
<td>63.5</td>
<td><b>54.3 (-14.5%)</b></td>
</tr>
<tr>
<td>GPU Mem. (↓)</td>
<td>55.9</td>
<td><b>46.1 (-17.5%)</b></td>
</tr>
<tr>
<td>Max Batch (↑)</td>
<td>4</td>
<td><b>16 (×4)</b></td>
</tr>
</tbody>
</table>
## Inference
```python
from diffusers import DiffusionPipeline, AutoencoderKL, UNet2DConditionModel
import torch
sdxl_id = "stabilityai/stable-diffusion-xl-base-1.0"
vae_id = "madebyollin/sdxl-vae-fp16-fix"
unet_id = "mapo-t2i/mapo-beta"
vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16)
unet = UNet2DConditionModel.from_pretrained(unet_id, torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(sdxl_id, vae=vae, unet=unet, torch_dtype=torch.float16).to("cuda")
prompt = "An abstract portrait consisting of bold, flowing brushstrokes against a neutral background."
image = pipeline(prompt=prompt, num_inference_steps=30).images[0]
```
For qualitative results, please visit our [project website](https://mapo-t2i.github.io/).
## Citation
```bibtex
@misc{hong2024marginaware,
title={Margin-aware Preference Optimization for Aligning Diffusion Models without Reference},
author={Jiwoo Hong and Sayak Paul and Noah Lee and Kashif Rasul and James Thorne and Jongheon Jeong},
year={2024},
eprint={2406.06424},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
``` |