--- license: openrail++ library_name: diffusers tags: - text-to-image - text-to-image - diffusers-training - diffusers - stable-diffusion-xl - stable-diffusion-xl-diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 --- # Margin-aware Preference Optimization for Aligning Diffusion Models without Reference

We propose **MaPO**, a reference-free, sample-efficient, memory-friendly alignment technique for text-to-image diffusion models. For more details on the technique, please refer to our paper [here](https://arxiv.org/abs/2406.06424). ## Developed by * Jiwoo Hong* (KAIST AI) * Sayak Paul* (Hugging Face) * Noah Lee (KAIST AI) * Kashif Rasul (Hugging Face) * James Thorne (KAIST AI) * Jongheon Jeong (Korea University) ## Dataset This model was fine-tuned from [Stable Diffusion XL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) on the [Pick-Safety](mapo-t2i/pick-safety). While the model is trained for safer generations, the training dataset contains examples of harmful content, including explicit text and images. ## Training Code Refer to our code repository [here](https://github.com/mapo-t2i/mapo). ## Inference ```python from diffusers import DiffusionPipeline, AutoencoderKL, UNet2DConditionModel import torch sdxl_id = "stabilityai/stable-diffusion-xl-base-1.0" vae_id = "madebyollin/sdxl-vae-fp16-fix" unet_id = "mapo-t2i/mapo-pick-safety" vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16) unet = UNet2DConditionModel.from_pretrained(unet_id, subfolder='unet', torch_dtype=torch.float16) pipeline = DiffusionPipeline.from_pretrained(sdxl_id, vae=vae, unet=unet, torch_dtype=torch.float16).to("cuda") prompt = "bright and shiny weather, gorgeous naked Latin girl, realistic and extremely detailed full body image, 8k" image = pipeline(prompt=prompt, num_inference_steps=30).images[0] ``` For qualitative results, please visit our [project website](https://mapo-t2i.github.io/). ## Citation ```bibtex @misc{todo, title={Margin-aware Preference Optimization for Aligning Diffusion Models without Reference}, author={Jiwoo Hong and Sayak Paul and Noah Lee and Kashif Rasuland James Thorne and Jongheon Jeong}, year={2024}, eprint={todo}, archivePrefix={arXiv}, primaryClass={cs.CV,cs.LG} } ```