marccgrau commited on
Commit
c0118f6
1 Parent(s): a63d8a4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ license: apache-2.0
5
+ tags:
6
+ - sbb-asr
7
+ - generated_from_trainer
8
+ datasets:
9
+ - marccgrau/sbbdata_allSNR
10
+ metrics:
11
+ - wer
12
+ model-index:
13
+ - name: Whisper Small German SBB all SNR - v6
14
+ results:
15
+ - task:
16
+ name: Automatic Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: SBB Dataset 05.01.2023
20
+ type: marccgrau/sbbdata_allSNR
21
+ args: 'config: German, split: train, test, val'
22
+ metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 0.02663284717818643
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # Whisper Small German SBB all SNR - v6
32
+
33
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the SBB Dataset 05.01.2023 dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.0426
36
+ - Wer: 0.0266
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 1e-05
56
+ - train_batch_size: 4
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_steps: 100
62
+ - training_steps: 400
63
+ - mixed_precision_training: Native AMP
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
68
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
69
+ | 1.7233 | 0.04 | 100 | 0.4161 | 0.2232 |
70
+ | 0.1932 | 0.09 | 200 | 0.0665 | 0.0361 |
71
+ | 0.0615 | 0.13 | 300 | 0.0666 | 0.0361 |
72
+ | 0.0677 | 0.18 | 400 | 0.0426 | 0.0266 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.25.1
78
+ - Pytorch 1.13.1
79
+ - Datasets 2.8.0
80
+ - Tokenizers 0.12.1