File size: 1,440 Bytes
aa2ef2b 526247e c474585 526247e aa2ef2b c474585 e8fdfb1 c474585 e1a3cdb c474585 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
---
license: agpl-3.0
language:
- pt
- gl
widget:
- text: >-
A minha amiga Rosa, de São Paulo, estudou en Montreal. Agora trabalha em
Santiago de Compostela com o Mário.
---
# Named Entity Recognition (NER) model for Portuguese
This is a NER model for Portuguese which uses the standard 'enamex' classes: LOC (geographical locations); PER (people); ORG (organizations); MISC (other entities).
The model is based on [BERTimbau Large](https://huggingface.co/neuralmind/bert-large-portuguese-cased), which has been fine-tuned using a combination of available corpora (see [1] for details).
There is an alternative model trained using [BERTimbau Base](https://huggingface.co/neuralmind/bert-base-portuguese-cased): [bert-base-pt-ner-enamex](https://huggingface.co/marcosgg/bert-base-pt-ner-enamex).
It was trained with a batch size of 32 and a learning rate of 3e-5 during 3 epochs. It achieved the following results on the test set (Precision/Recall/F1): 0.919/0.925/0.922.
[1] Pablo Gamallo, Marcos Garcia & Patricia Martín-Rodilla, 2019. [NER and open information extraction for Portuguese notebook for IberLEF 2019 Portuguese named entity recognition and relation extraction tasks](https://ceur-ws.org/Vol-2421/NER_Portuguese_paper_6.pdf). In _Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019)
co-located with 35th Conference of the Spanish Society for Natural Language Processing (SEPLN 2019)_: 457-467. |