File size: 2,376 Bytes
7152be2 3f9255a 3baa668 3f9255a 3baa668 809acd2 3baa668 3f9255a 809acd2 3baa668 6bc1c8f 3baa668 6bc1c8f 3baa668 3f9255a 3baa668 3f9255a 3baa668 3f9255a 3baa668 3f9255a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
language:
- en
- ar
tags:
- translation
- Arabic Abjad Characters
- Arabic
license: apache-2.0
datasets:
- marefa-mt
---
# Marefa-Mt-En-Ar
# نموذج المعرفة للترجمة الآلية من الإنجليزية للعربية
## Model description
This is a model for translating English to Arabic. The special about this model that is take into considration the
using of additional Arabic characters like `پ` or `گ`.
## عن النموذج
هذا النموذج للترجمة الآلية من اللغة الإنجليزية إلى اللغة العربية, هو أول نماذج الترجمة الآلية التي تصدر تحت رعاية
[موسوعة المعرفة](https://www.marefa.org)
يتميز هذا النموذج عن غيره من النماذج بدعمه لحروف الأبجدية العربية الإضافية لتمييز الصوتيات الخاصة في اللغة الإنجليزية مثل `پ` , `گ`.
يمكنك زيارة
[هذه الصفحة](https://www.marefa.org/%D8%A7%D9%84%D9%85%D8%B9%D8%B1%D9%81%D8%A9:%D8%AF%D9%84%D9%8A%D9%84_%D8%A7%D9%84%D8%A3%D8%B3%D9%84%D9%88%D8%A8#.D8.AD.D8.B1.D9.88.D9.81_.D8.A5.D8.B6.D8.A7.D9.81.D9.8A.D8.A9_.D9.84.D9.84.D9.86.D8.B7.D9.82_.D8.A7.D9.84.D8.B3.D9.84.D9.8A.D9.85)
لمعرفة أكثر عن أسلوب إستخدام هذه الحروف الأبجدية العربية
### How to use كيفية الإستخدام
Install transformers and sentencepiece (python >= 3.6)
`$ pip3 install transformers==4.3.0 sentencepiece==0.1.95 nltk==3.5 protobuf==3.15.3 torch==1.7.1`
> If you are using `Google Colab`, please restart your runtime after installing the packages.
-----------
```python
from transformers import MarianTokenizer, MarianMTModel
mname = "marefa-nlp/marefa-mt-en-ar"
tokenizer = MarianTokenizer.from_pretrained(mname)
model = MarianMTModel.from_pretrained(mname)
# English Sample Text
input = "President Putin went to the presidential palace in the capital, Kiev"
translated_tokens = model.generate(**tokenizer.prepare_seq2seq_batch([input], return_tensors="pt"))
translated_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated_tokens]
# translated Arabic Text
print(translated_text)
# ذهب الرئيس پوتن إلى القصر الرئاسي في العاصمة كييڤ
``` |