File size: 3,050 Bytes
7d25cfa
 
 
 
 
 
 
 
 
 
 
 
 
 
6af3177
 
 
 
 
01fac9a
 
455b915
6af3177
 
 
 
 
 
 
 
455b915
 
 
 
 
6af3177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
---
license: mit
datasets:
- tweet_eval
- bookcorpus
- wikipedia
- cc_news
language:
- en
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- medical
---
# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

Pretrained model on English language for text classification. Model trained from [tweet_emotion_eval](https://huggingface.co/elozano/tweet_emotion_eval) ([roberta-base](https://huggingface.co/roberta-base) fine-tuned on emotion task of [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset) on psychotherapy text transcripts.

Given a sentence, this model provides a binary classification as either symptomatic or non-symptomatic where symptomatic means the sentence displays signs of anxiety and/or depression.

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Developed by:** [More Information Needed]
- **Funded by [optional]:** Queen's University
- **Model type:** RoBERTa
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** [elonzano/tweet_emotion_eval](https://huggingface.co/elozano/tweet_emotion_eval)

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure 

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary