--- license: mit datasets: - tweet_eval - bookcorpus - wikipedia - cc_news language: - en metrics: - accuracy pipeline_tag: text-classification tags: - medical --- # Model Card for Model ID Pretrained model on English language for text classification. Model trained from [tweet_emotion_eval](https://huggingface.co/elozano/tweet_emotion_eval) ([roberta-base](https://huggingface.co/roberta-base) fine-tuned on emotion task of [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset) on psychotherapy text transcripts. Given a sentence, this model provides a binary classification as either symptomatic or non-symptomatic where symptomatic means the sentence displays signs of anxiety and/or depression. ## Model Details ### Model Description - **Developed by:** [More Information Needed] - **Funded by [optional]:** Queen's University - **Model type:** RoBERTa - **Language(s) (NLP):** English - **License:** MIT - **Finetuned from model:** [elonzano/tweet_emotion_eval](https://huggingface.co/elozano/tweet_emotion_eval) ## Uses ### Direct Use [More Information Needed] ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary