--- license: mit datasets: - mozilla-foundation/common_voice_16_1 language: - es library_name: transformers pipeline_tag: automatic-speech-recognition tags: - spanish - español - speech - recognition - whisper - distil-whisper --- # distil-whisper-large-v3-es This is the repository for a distilled version of the [Whisper v3 large model](https://huggingface.co/openai/whisper-large-v3) trained on the [Mozilla Common Voice dataset v16.1](https://huggingface.co/datasets/mozilla-foundation/common_voice_16_1). This model was possible through the collaboration of [SandboxAI](https://sandbox-ai.github.io) and the [Universidad Nacional de Rio Negro](https://www.unrn.edu.ar/home) ## Usage Distil-Whisper is supported in Hugging Face 🤗 Transformers from version 4.35 onwards. To run the model, first install the latest version of the Transformers library. For this example, we'll also install 🤗 Datasets to load toy audio dataset from the Hugging Face Hub: ```bash pip install --upgrade pip pip install --upgrade transformers accelerate datasets[audio] ``` ### Short-Form Transcription The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) class to transcribe short-form audio files (< 30-seconds) as follows: ```python import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from datasets import load_dataset device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "marianbasti/distil-whisper-large-v3-es" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, torch_dtype=torch_dtype, device=device, ) dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") sample = dataset[0]["audio"] result = pipe(sample) print(result["text"]) ``` To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline: ```diff - result = pipe(sample) + result = pipe("audio.mp3") ``` ### Long-Form Transcription Distil-Whisper uses a chunked algorithm to transcribe long-form audio files (> 30-seconds). In practice, this chunked long-form algorithm is 9x faster than the sequential algorithm proposed by OpenAI in the Whisper paper (see Table 7 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)). To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For Distil-Whisper, a chunk length of 15-seconds is optimal. To activate batching, pass the argument `batch_size`: ```python import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from datasets import load_dataset device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "marianbasti/distil-whisper-large-v3-es" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, ) dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") sample = dataset[0]["audio"] result = pipe(sample) print(result["text"]) ``` ### Speculative Decoding Distil-Whisper can be used as an assistant model to Whisper for [speculative decoding](https://huggingface.co/blog/whisper-speculative-decoding). Speculative decoding mathematically ensures the exact same outputs as Whisper are obtained while being 2 times faster. This makes it the perfect drop-in replacement for existing Whisper pipelines, since the same outputs are guaranteed. In the following code-snippet, we load the assistant Distil-Whisper model standalone to the main Whisper pipeline. We then specify it as the "assistant model" for generation: ```python from transformers import pipeline, AutoModelForCausalLM, AutoModelForSpeechSeq2Seq, AutoProcessor import torch from datasets import load_dataset device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 assistant_model_id = "marianbasti/distil-whisper-large-v3-es" assistant_model = AutoModelForCausalLM.from_pretrained( assistant_model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) assistant_model.to(device) model_id = "openai/whisper-large-v3" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, generate_kwargs={"assistant_model": assistant_model}, torch_dtype=torch_dtype, device=device, ) dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") sample = dataset[0]["audio"] result = pipe(sample) print(result["text"]) ``` ## Training The model was trained for 60,000 optimisation steps (or around 1.47 epochs), on a single RTX3090 for ~60 hours, using the following training parameters: ``` --teacher_model_name_or_path "openai/whisper-large-v3" --train_dataset_name "mozilla-foundation/common_voice_16_1" --train_dataset_config_name "es" --train_split_name "train" --text_column_name "sentence" --eval_dataset_name "mozilla-foundation/common_voice_16_1" --eval_dataset_config_name "es" --eval_split_name "validation" --eval_text_column_name "sentence" --eval_steps 10000 --save_steps 10000 --warmup_steps 500 --learning_rate 1e-4 --lr_scheduler_type "linear" --logging_steps 25 --save_total_limit 1 --max_steps 60000 --wer_threshold 10 --per_device_train_batch_size 8 --per_device_eval_batch_size 8 --dataloader_num_workers 12 --preprocessing_num_workers 12 --output_dir "./" --do_train --do_eval --gradient_checkpointing --predict_with_generate --overwrite_output_dir --use_pseudo_labels "false" --freeze_encoder --streaming False ``` ## Results The distilled model performs with a 5.11% WER (10.15% orthogonal WER). ## License Distil-Whisper inherits the [MIT license](https://github.com/huggingface/distil-whisper/blob/main/LICENSE) from OpenAI's Whisper model. ## Citation If you use this model, please consider citing the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430): ``` @misc{gandhi2023distilwhisper, title={Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling}, author={Sanchit Gandhi and Patrick von Platen and Alexander M. Rush}, year={2023}, eprint={2311.00430}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```