marianokamp commited on
Commit
7b0c2e0
1 Parent(s): 49d6c42

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
- value: 446.82 +/- 124.08
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
+ value: 1825.88 +/- 114.01
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-AntBulletEnv-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3a4db5719993361b336b03b206dfe75df3198498363a2349e47d1367f4264a09
3
- size 1099007
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c869d34e397bb58cdf39de47e7fe868478cf2f4d2b7f691236b429cb34e8ae20
3
+ size 129260
a2c-AntBulletEnv-v0/data CHANGED
@@ -4,29 +4,27 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f67f3b49700>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f67f3b49790>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f67f3b49820>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f67f3b498b0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f67f3b49940>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f67f3b499d0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f67f3b49a60>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f67f3b49af0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f67f3b49b80>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f67f3b49c10>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f67f3b49ca0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f67f3b49d30>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x7f67f3b463f0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
24
  ":type:": "<class 'dict'>",
25
- ":serialized:": "gAWVlgAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE2QAU0sAWWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
26
- "net_arch": [
27
- 400,
28
- 300
29
- ],
30
  "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
31
  "optimizer_kwargs": {
32
  "alpha": 0.99,
@@ -66,16 +64,16 @@
66
  "_num_timesteps_at_start": 0,
67
  "seed": null,
68
  "action_noise": null,
69
- "start_time": 1674391039816451484,
70
- "learning_rate": 0.0007,
71
  "tensorboard_log": null,
72
  "lr_schedule": {
73
  ":type:": "<class 'function'>",
74
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
75
  },
76
  "_last_obs": {
77
  ":type:": "<class 'numpy.ndarray'>",
78
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAE83fL+jSrI+YwqqPv4tzz4DkCM/Hdq2PnYwPr5ToWm+GP9AP472xz5HSkS/lGglPthhhj+5TME+qEUbP3NKvr0ocoC/tjzZPryNEj8gzfE9zH6GP98xqj2lF5u+z6hivPzO0z65qyA/bhDDPuFExD7rlVy/KPDSP170bL/Ez7A+nZDxvjyBlT7PkgC+YrlwvvBULz+FTsC+hMsqv0A33zvaYiI/B6cwv6e4CT8La7q98xEFvqy24r6hLw8/I9otvSK4Fr+SrQa/P/iYvi+5mr38ztM+uasgP24Qwz7hRMQ+Pa93v93VHj+w9kM+QtvevDVRG79qFBs+hYM5vh1Wcb6RktC/HC9uPcC9Q79uLli9u6EiPwydBr+Lvho/Z7RmPebggb9v582+oUESP7fK6zw4zqA/DripPT0wlL7PlWo+/M7TPrmrID9uEMM+4UTEPoOBfL+jIg0/t8ttPhQ2Ab3xOZa8WtpKPrQP1Tz7LZq+5mbNvxsdgDw5UCu/3UN6vQ6Lkj//sdw82QsbP7Ppdz1UolC/77HbOy0TMj9CzHQ9rpujP2G6QL2745m+BDCWvfzO0z65qyA/bhDDPuFExD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
79
  },
80
  "_last_episode_starts": {
81
  ":type:": "<class 'numpy.ndarray'>",
@@ -83,26 +81,26 @@
83
  },
84
  "_last_original_obs": {
85
  ":type:": "<class 'numpy.ndarray'>",
86
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACsrpk1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADtK3vAAAAABO/PW/AAAAAGrhtr0AAAAAZ+oAQAAAAAA6oQM+AAAAAIdD/D8AAAAAobzoOwAAAAA+uP6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhuSbtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJUS8L0AAAAA9EbxvwAAAADiruw8AAAAALBo6j8AAAAAUN3CvQAAAADrNf0/AAAAAAIwgj0AAAAAkojsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALDceTQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICJeYq9AAAAAOfo+78AAAAAuPCLvQAAAAANdd4/AAAAAGf0e70AAAAAm8/3PwAAAAA6h5K9AAAAAP4U+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7Wou1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAVcoHvAAAAACBitu/AAAAAEvysb0AAAAAXQX4PwAAAADa2IA8AAAAAHV+2z8AAAAAqq9lvAAAAABUzvu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
87
  },
88
  "_episode_num": 0,
89
- "use_sde": false,
90
  "sde_sample_freq": -1,
91
  "_current_progress_remaining": 0.0,
92
  "ep_info_buffer": {
93
  ":type:": "<class 'collections.deque'>",
94
- ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC7nbh3qzKMAWyUTegDjAF0lEdAq+cvdVNpNHV9lChoBkdAc+tGxlg+hWgHTegDaAhHQKvsJvddmg91fZQoaAZHQHEgCo86mwdoB03oA2gIR0Cr7diiAUcodX2UKGgGR0CFNs64Ds+naAdN6ANoCEdAq+9kXHim23V9lChoBkdAgtMa3iJfpmgHTegDaAhHQKvzhHOKO1h1fZQoaAZHQHLM/GACnxdoB03oA2gIR0Cr+KWLYPGydX2UKGgGR0B+rviOvMbFaAdN6ANoCEdAq/p16/qPfnV9lChoBkdAewONwiqyW2gHTegDaAhHQKv8AMy8BdV1fZQoaAZHQG4G5avA44poB03oA2gIR0CsACsdDIBBdX2UKGgGR0B6mA7DEWIoaAdN6ANoCEdArAUbtiQT23V9lChoBkdAedQGj9GZu2gHTcoDaAhHQKwGfQxesxR1fZQoaAZHQHeLvNZ/0/ZoB03oA2gIR0CsCGT+m3vydX2UKGgGR0B9t8tL+PzWaAdN6ANoCEdArAxVkOI683V9lChoBkdAdtZE6T4cm2gHTegDaAhHQKwRRiGWUr11fZQoaAZHQHiYfjS5RTFoB03oA2gIR0CsEqNpmEoOdX2UKGgGR0B7fOHbh3qzaAdN6ANoCEdArBSIymALA3V9lChoBkdAghDVf3N9pmgHTegDaAhHQKwYfyIYWLx1fZQoaAZHQIe+JJNCZ4RoB03oA2gIR0CsHWu1WsBAdX2UKGgGR0CELs/gzguRaAdN6ANoCEdArB7PcnE2pHV9lChoBkdAfnGnEl3QlmgHTegDaAhHQKwgsKMvRJF1fZQoaAZHQIXJEh/y5I9oB03oA2gIR0CsJLnhCMP0dX2UKGgGR0B4nC9zwMH9aAdN6ANoCEdArCm8Y2sJY3V9lChoBkdAeKarRBu4w2gHTegDaAhHQKwrJOKwY+B1fZQoaAZHQHSZoiLVFx5oB03oA2gIR0CsLQrzXjEOdX2UKGgGR0Bscsl9jPOZaAdN6ANoCEdArDEM6FM7EHV9lChoBkdAgjy8HGCI12gHTegDaAhHQKw2EVtXPqt1fZQoaAZHQGAwGfGuLaVoB036AWgIR0CsN1CcXm/4dX2UKGgGR0CB23SlWOp9aAdN6ANoCEdArDdzpHI6sHV9lChoBkdAeDh5Lh73PGgHTegDaAhHQKw5X9aUzKt1fZQoaAZHQHhjjuWrwORoB03oA2gIR0CsQlqLCN0edX2UKGgGR0B9V4FMZgogaAdN6ANoCEdArEOVuvUz9HV9lChoBkdAhGzV32VVxWgHTegDaAhHQKxDuI+GGmF1fZQoaAZHQH+pw6ZH/cZoB03oA2gIR0CsRZ9eyAx0dX2UKGgGR0CChNfReC04aAdN6ANoCEdArE6gsZpBX3V9lChoBkdAfWG76Hj6vmgHTegDaAhHQKxP3P0qYqp1fZQoaAZHQIFRPa+N96VoB03oA2gIR0CsT/74zrNXdX2UKGgGR0CBucrCm/FjaAdN6ANoCEdArFHWHgxagXV9lChoBkdAXByij+Jgs2gHTQcBaAhHQKxVApKjBVN1fZQoaAZHQGcAtWuHN5doB03KAWgIR0CsVYXOObRXdX2UKGgGR0B/sGvQnhKlaAdN6ANoCEdArFrREMLF43V9lChoBkdAfuboWHk92WgHTegDaAhHQKxcDipeeFt1fZQoaAZHQIFW64H5aeRoB03oA2gIR0CsYWEBjnV5dX2UKGgGR0B3h1D9fkWAaAdN6ANoCEdArGHauQp4KXV9lChoBkdAgICOqebut2gHTegDaAhHQKxnFYSQHRl1fZQoaAZHQID7Z8OTaCdoB03oA2gIR0CsaFGcvugIdX2UKGgGR0B0FSDUVi4KaAdNxwJoCEdArGqd7IDHO3V9lChoBkdAgRRzmwJPZmgHTegDaAhHQKxtmTxoZht1fZQoaAZHQHls7j5sTFloB03oA2gIR0Csc41Aqur7dX2UKGgGR0ByX5VIZqEfaAdN6ANoCEdArHTmCf6Gg3V9lChoBkdAeZZOQyRB/2gHTegDaAhHQKx3MKpDNQl1fZQoaAZHQHte2JBPbfxoB03oA2gIR0Csejrk0aZQdX2UKGgGR0Bf1JHRTjvNaAdNcgFoCEdArHuzbg0j1XV9lChoBkdAc1eY8Md92GgHTegDaAhHQKyABxn3+Mt1fZQoaAZHQIJn92s7uD1oB03oA2gIR0CsgUUYj0L/dX2UKGgGR0Bwh9vWH1vmaAdN6ANoCEdArIaMz67/XHV9lChoBkdAebbB2wFC9mgHTegDaAhHQKyICx5cC5p1fZQoaAZHQHJtVnZkCmxoB03oA2gIR0CsjGNpVS4wdX2UKGgGR0B5ax7/n4fwaAdN6ANoCEdArI2bn1WbPXV9lChoBkdAgWJkVN5+pmgHTegDaAhHQKyS2y0rsjV1fZQoaAZHQH9d40hvBJtoB03oA2gIR0CslFI1DSgHdX2UKGgGR0BxFtAeJYT1aAdN6ANoCEdArJixKODJ2nV9lChoBkdAb8kJhvze42gHTegDaAhHQKyZ79uxbB51fZQoaAZHQG9D4AbQ1JloB03oA2gIR0Csnyhx5s0pdX2UKGgGR0B6aXmuDBdlaAdN6ANoCEdArKCs23rleXV9lChoBkdAgnyrmhdt22gHTegDaAhHQKyk7Eehf0F1fZQoaAZHQHmSBy0a6z5oB03oA2gIR0CspjEJSiuddX2UKGgGR0Bxo7KlpGnXaAdN6ANoCEdArKuSZ8a4t3V9lChoBkdAeNZbo8p1BGgHTegDaAhHQKytDQQcxTN1fZQoaAZHQHPpmhZha1VoB03oA2gIR0CssXXevZAZdX2UKGgGR0CBNg/D+BH1aAdN6ANoCEdArLK2thd+onV9lChoBkdAe2P74zrNW2gHTegDaAhHQKy39KAavRt1fZQoaAZHQH4OKT0QK8doB03oA2gIR0CsuXcQ7LdOdX2UKGgGR0CBjlWVeKKpaAdN6ANoCEdArL3D4Ju2qnV9lChoBkdAcvEnQpnYhGgHTegDaAhHQKy/C++ueSV1fZQoaAZHQIKNG0/nnuBoB03oA2gIR0CsxDfoaDPGdX2UKGgGR0B1e6W9lEqlaAdN6ANoCEdArMWweT3Zf3V9lChoBkdAgfVSZa3ZwmgHTegDaAhHQKzJ7rY5DJF1fZQoaAZHQH9UPE87p3ZoB03oA2gIR0CsyzKWLP2PdX2UKGgGR0CDlxJ/XoTxaAdN6ANoCEdArNBnqVyFPHV9lChoBkdAgQnDJU5uImgHTegDaAhHQKzR5Rb8m8d1fZQoaAZHQIGk5ib2Dg9oB03oA2gIR0Cs1iaMBIWhdX2UKGgGR0CBpsVxjriVaAdN6ANoCEdArNdpxgiNbXV9lChoBkdAge/L/bTMJWgHTegDaAhHQKzcoQr+YMR1fZQoaAZHQIFwxDCxeLNoB03oA2gIR0Cs3hsJIDoydX2UKGgGR0CCP9T3qRlpaAdN6ANoCEdArOJmdkJ8fHV9lChoBkdAgRx15KODJ2gHTegDaAhHQKzjrz/ZM+N1fZQoaAZHQIDY1u1ndwhoB03oA2gIR0Cs6Np48loldX2UKGgGR0CDtonm7rcCaAdN6ANoCEdArOpYO8TSLXV9lChoBkdAgHRR/EwWWWgHTegDaAhHQKzuvYuCf6J1fZQoaAZHQIGMApMHryFoB03oA2gIR0Cs7/U8/2TQdX2UKGgGR0CAYU1a4c3maAdN6ANoCEdArPU1onKGL3V9lChoBkdAdHGY/3WWhWgHTegDaAhHQKz2tvqC6H11fZQoaAZHQIFvST+vQnhoB03oA2gIR0Cs+vc3VCokdX2UKGgGR0B+YrI+4b0faAdN6ANoCEdArPwu9YfW+XV9lChoBkdAgiZddmg8KWgHTegDaAhHQK0BYYb83uN1fZQoaAZHQICxijesPrhoB03oA2gIR0CtAuCZfD1odX2UKGgGR0CBl3oq0+khaAdN6ANoCEdArQcbILgGbHV9lChoBkdAgZlGrbQC0WgHTegDaAhHQK0IYQUYbbV1fZQoaAZHQHUyBas6q81oB03oA2gIR0CtDZwOWjXWdX2UKGgGR0B+j/Zi/fwaaAdN6ANoCEdArQ8iLZSNwXVlLg=="
95
  },
96
  "ep_success_buffer": {
97
  ":type:": "<class 'collections.deque'>",
98
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
99
  },
100
- "_n_updates": 62661,
101
  "n_steps": 8,
102
- "gamma": 0.98,
103
- "gae_lambda": 1.0,
104
  "ent_coef": 0.0,
105
- "vf_coef": 0.5,
106
  "max_grad_norm": 0.5,
107
  "normalize_advantage": false
108
  }
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f462f880700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f462f880790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f462f880820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f462f8808b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f462f880940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f462f8809d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f462f880a60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f462f880af0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f462f880b80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f462f880c10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f462f880ca0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f462f880d30>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f462f87e4e0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
24
  ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
 
 
28
  "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
  "optimizer_kwargs": {
30
  "alpha": 0.99,
 
64
  "_num_timesteps_at_start": 0,
65
  "seed": null,
66
  "action_noise": null,
67
+ "start_time": 1674406744907049052,
68
+ "learning_rate": 0.00096,
69
  "tensorboard_log": null,
70
  "lr_schedule": {
71
  ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
  },
74
  "_last_obs": {
75
  ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAANTvT9FW4q/jQrdPRpFaD9Je3i/e2Lcvi+D6L98ngy/w28eP6u6xLwE+Hi/O/J/OhOQnr6I6II/u641PyB607/8PNK/A96OP45grL+rtYa/gBEbvzNMUr7Giz4/NU+xP7Xefr/A1ww/DlrUvwqQeb+U+5A+7K5Vv4xgkj4IR8k+5FUfP+Ptrz+Gi2K9VjmCv4nnHT8Zw+C81AmCvuRkfL7ZxTI/ZpNvP0hWUT+3k8g93TmHPwIMB0CJ2mg+P5EAvosmEz9Yor++1tPKP09yYz613n6/wNcMPw5a1L88TYM/mzK8vkjgH78hXso+4kPuPQ6lszxhPwA/1lhQv6EXqz7RJh4/ipB5vHKleL8EyNq7dH3WvjC1nT/p9QM/CtUoPgRGJT1afgpAIF47vjI1iT7aBR2/rEhpPrFwGT/kj14+td5+v8DXDD8OWtS/PE2DPwFJcD+ysJu/Eo13vIO74j7+0PO/uruCv8tZLL8tclc/ch0ePybINb1oxPA9VYe8vdKiqb95yXY9n2wSvyjzhz6uMQPAK/bXv8rY97+Q8fw+jwgnv/hrOb1fnHK/7sEXP0mRgD/A1ww/W08aPwqQeb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
  },
78
  "_last_episode_starts": {
79
  ":type:": "<class 'numpy.ndarray'>",
 
81
  },
82
  "_last_original_obs": {
83
  ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACQZXm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuj+JPQAAAABYm9u/AAAAAB6AlL0AAAAAi+HYPwAAAAAvlYA8AAAAAJGq4j8AAAAA5aMlPQAAAACFR9y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF9e3tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMsFOD0AAAAAb7PtvwAAAAAsHJW9AAAAAHZF9T8AAAAAkt2WPAAAAACZWd8/AAAAAC0JBz4AAAAAcZzzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJY9BrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICsGo09AAAAAIEd/b8AAAAAFEtKPQAAAABqaeQ/AAAAADTn7bwAAAAABbPqPwAAAACrph49AAAAAGkTAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABG10w2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHtMtvQAAAADYIdq/AAAAACXbBj0AAAAAS9nxPwAAAAAivTy9AAAAACtC7T8AAAAArnTVvQAAAAAcEfi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
  },
86
  "_episode_num": 0,
87
+ "use_sde": true,
88
  "sde_sample_freq": -1,
89
  "_current_progress_remaining": 0.0,
90
  "ep_info_buffer": {
91
  ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJSFI3FUADKMAWyUTegDjAF0lEdAp6v0stkFwHV9lChoBkdAmhlTviLl3mgHTegDaAhHQKetirsByS51fZQoaAZHQJp0wCbMHKRoB03oA2gIR0Cnrs2iDdxidX2UKGgGR0CZjNG8VYZEaAdN6ANoCEdAp68plSS/03V9lChoBkdAl+KE7Sy+pWgHTegDaAhHQKe4ab83uNR1fZQoaAZHQJ4EbXbuc+doB03oA2gIR0CnugLiMo+fdX2UKGgGR0CcKpPxhDw6aAdN6ANoCEdAp7tDDqGDc3V9lChoBkdAnEa+YlY2bWgHTegDaAhHQKe7mEQoTf11fZQoaAZHQJ5EzMcIZ65oB03oA2gIR0CnxN/4yoGZdX2UKGgGR0CfFwNZvDP4aAdN6ANoCEdAp8aEEaESNHV9lChoBkdAn5NUpI+W4WgHTegDaAhHQKfH1aKUFB91fZQoaAZHQJ9b28Yht+FoB03oA2gIR0CnyDLO7g89dX2UKGgGR0CcHBP9DQZ5aAdN6ANoCEdAp9F7NGEwnHV9lChoBkdAm5taMR6F/WgHTegDaAhHQKfTJ7laKUF1fZQoaAZHQJrczHktEohoB03oA2gIR0Cn1HHkkrwwdX2UKGgGR0CbOJ2xIJ7caAdN6ANoCEdAp9TJLqUu+XV9lChoBkdAoB979ZRsM2gHTegDaAhHQKfd9RKHwgF1fZQoaAZHQJ7HF6v7m+1oB03oA2gIR0Cn35Ar6LwXdX2UKGgGR0Cfd3RdQfp2aAdN6ANoCEdAp+Dfx4IKMXV9lChoBkdAn7vHgHeJpGgHTegDaAhHQKfhN0EHMU11fZQoaAZHQJz7ORbKRuFoB03oA2gIR0Cn6nSntOVPdX2UKGgGR0CctlLVnVXnaAdN6ANoCEdAp+weZPVNH3V9lChoBkdAntoFX/5tWWgHTegDaAhHQKftaIYWLxZ1fZQoaAZHQJ/JQJw84gloB03oA2gIR0Cn7cJHy3CsdX2UKGgGR0CdfhR+BpYcaAdN6ANoCEdAp/cDmOlwcnV9lChoBkdAoDcWXRgJC2gHTegDaAhHQKf4pbL2YfJ1fZQoaAZHQJ7bIUxmCiBoB03oA2gIR0Cn+eyfL9uQdX2UKGgGR0CegIzIFNcoaAdN6ANoCEdAp/pFYOlO5HV9lChoBkdAnmdCElE7XGgHTegDaAhHQKgDa3GXHBF1fZQoaAZHQKAPaQEIPbxoB03oA2gIR0CoBQeq7yxzdX2UKGgGR0CFVGXlbNbDaAdN6ANoCEdAqAZYFPi1iXV9lChoBkdAoEw65oXbd2gHTegDaAhHQKgGsJhvze51fZQoaAZHQKAF/UTcqONoB03oA2gIR0CoD9IdELH/dX2UKGgGR0CeE+Zv1lGxaAdN6ANoCEdAqBFz9qDbrXV9lChoBkdAnW8VOTJQtWgHTegDaAhHQKgSvrsSkCV1fZQoaAZHQJ+Vd5MURFtoB03oA2gIR0CoExQpWmxddX2UKGgGR0CgCj4+0PYnaAdN6ANoCEdAqBwjKNhmXnV9lChoBkdAn52yZWq95GgHTegDaAhHQKgdys8xKxt1fZQoaAZHQJV1kZCOWB1oB03oA2gIR0CoHwdCeEqUdX2UKGgGR0CbusJ2t+1CaAdN6ANoCEdAqB9ZoIv8InV9lChoBkdAoLnmpMpPRGgHTegDaAhHQKgoVNUwSJ11fZQoaAZHQJ/dDAVO9FpoB03oA2gIR0CoKep8v24/dX2UKGgGR0CgAcA+Y+jeaAdN6ANoCEdAqCss6BAfMnV9lChoBkdAmnKUwztTk2gHTegDaAhHQKgrhAtWdVh1fZQoaAZHQJ0ALATIvJ1oB03oA2gIR0CoNLJKraM8dX2UKGgGR0CaCsaG5+YuaAdN6ANoCEdAqDZEcp9ZzXV9lChoBkdAnvfKeGwiaGgHTegDaAhHQKg3iTCcf/51fZQoaAZHQJxpFirksBhoB03oA2gIR0CoN92UjcEedX2UKGgGR0CXiNL9uP3jaAdN6ANoCEdAqEEBd0JWvXV9lChoBkdAnnfsdT5wfmgHTegDaAhHQKhCmHoouwp1fZQoaAZHQJySMu01IiFoB03oA2gIR0CoQ+gjyFwldX2UKGgGR0CckozguRLcaAdN6ANoCEdAqEQ+KQ7tA3V9lChoBkdAnfhDH4oJA2gHTegDaAhHQKhNf8WKuSx1fZQoaAZHQJxZ/p3X7LtoB03oA2gIR0CoTyXFkxyodX2UKGgGR0CdohjqOcUeaAdN6ANoCEdAqFBrTx5LRXV9lChoBkdAnPnz5j6N2mgHTegDaAhHQKhQw2G7Bft1fZQoaAZHQJeZ2fChvitoB03oA2gIR0CoWhn8CPp7dX2UKGgGR0CcVyWcSXdCaAdN6ANoCEdAqFvB93KSxXV9lChoBkdAn2QbY9Pk72gHTegDaAhHQKhdFg4Otnx1fZQoaAZHQIviPoHLRrtoB03oA2gIR0CoXWxBmf5DdX2UKGgGR0Cevo8yeqaPaAdN6ANoCEdAqGav9gnc+XV9lChoBkdAnXzHKwIMSmgHTegDaAhHQKhoZK/20zF1fZQoaAZHQJ9kXu1F6RhoB03oA2gIR0CoacQeeWfLdX2UKGgGR0Ce4W+/QBxQaAdN6ANoCEdAqGofcJtzjnV9lChoBkdAoFTEH+qBE2gHTegDaAhHQKhzWeFtbcJ1fZQoaAZHQKBw5JZGKAJoB03oA2gIR0CodPy5iExqdX2UKGgGR0CgrqgWrOqvaAdN6ANoCEdAqHZVaB7NS3V9lChoBkdAoMtKU3XI2mgHTegDaAhHQKh2rrZ8KHB1fZQoaAZHQKAOdZYgaFVoB03oA2gIR0CogAcsMAmzdX2UKGgGR0CeYJMCcPOIaAdN6ANoCEdAqIGltsN2DHV9lChoBkdAmYFTTrmhd2gHTegDaAhHQKiC6L0Bfa91fZQoaAZHQJ5TDRRdhRZoB03oA2gIR0Cog0H+6y0KdX2UKGgGR0CcUUBZZB9kaAdN6ANoCEdAqIxIGdI5HXV9lChoBkdAoAo6be/HpGgHTegDaAhHQKiN3rKNhmZ1fZQoaAZHQJu3cEV32VVoB03oA2gIR0Cojxs98qnWdX2UKGgGR0Cc/6Oq//NraAdN6ANoCEdAqI9yrYGt63V9lChoBkdAnp9weeWfLGgHTegDaAhHQKiYq36yjYZ1fZQoaAZHQKBYM/0ulGhoB03oA2gIR0Comj5COWB0dX2UKGgGR0Cgd4lSsKb8aAdN6ANoCEdAqJt/uw5eaHV9lChoBkdAoLNaxeLNwGgHTegDaAhHQKib1C/oJRh1fZQoaAZHQJweGMfigkFoB03oA2gIR0CopPmTLW7OdX2UKGgGR0CgLovAwfyPaAdN6ANoCEdAqKaubb1yvXV9lChoBkdAnX3HenAIp2gHTegDaAhHQKin8eRPoFF1fZQoaAZHQJ/V2GSIP9VoB03oA2gIR0CoqEbUXpGGdX2UKGgGR0Cdl9axX4j9aAdN6ANoCEdAqLFgaBI4EXV9lChoBkdAnpAtkrf+CWgHTegDaAhHQKizADe0ojR1fZQoaAZHQJ4AYo3Jgb9oB03oA2gIR0CotESOR1YAdX2UKGgGR0Cg3ShxxT86aAdN6ANoCEdAqLSeYBvJinV9lChoBkdAne/XWWhRImgHTegDaAhHQKi9trC3w1B1fZQoaAZHQJ+YBdzGPxRoB03oA2gIR0Cov1et0V8DdX2UKGgGR0CgBWS00FbFaAdN6ANoCEdAqMCgp6QeWHV9lChoBkdAoE1jW5H3DmgHTegDaAhHQKjA+58Sf191fZQoaAZHQJ6oVTdcjaBoB03oA2gIR0Coynmm+CbudX2UKGgGR0Caa8kgOjIraAdN6ANoCEdAqMwalYU343V9lChoBkdAm7HkXk5p8GgHTegDaAhHQKjNadOqNqB1fZQoaAZHQJ1L/Aaef7JoB03oA2gIR0CozcCl7+kydX2UKGgGR0CZLhcXFcY7aAdN6ANoCEdAqNbtBQemvXV9lChoBkdAm1mEGmk30mgHTegDaAhHQKjYklzltCR1fZQoaAZHQJWZiM5wOvtoB03oA2gIR0Co2dwT/Q0GdX2UKGgGR0CZWm3j+717aAdN6ANoCEdAqNozDdgv13VlLg=="
93
  },
94
  "ep_success_buffer": {
95
  ":type:": "<class 'collections.deque'>",
96
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
  },
98
+ "_n_updates": 62500,
99
  "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
  "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
  "max_grad_norm": 0.5,
105
  "normalize_advantage": false
106
  }
a2c-AntBulletEnv-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:286d5dd3416fc388cd7371053baf9b997f13d1cdcde4ce72a08949add54dea88
3
- size 541195
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34d71e02a18e1ffa92de2ff22e8cf942ec2217ec66a4ff583004057fa40af9eb
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7c55c49e69c157a81e3fe3df27bdc07a466c30206ee6419290393cf5dfbd57fd
3
- size 541707
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e70ab443e3aecb300fd22587bf327f762017476060a9382cc5fa1a072c9a1f4
3
+ size 56958
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f67f3b49700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f67f3b49790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f67f3b49820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f67f3b498b0>", "_build": "<function ActorCriticPolicy._build at 0x7f67f3b49940>", "forward": "<function ActorCriticPolicy.forward at 0x7f67f3b499d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f67f3b49a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f67f3b49af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f67f3b49b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f67f3b49c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f67f3b49ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f67f3b49d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f67f3b463f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVlgAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE2QAU0sAWWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "net_arch": [400, 300], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674391039816451484, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAE83fL+jSrI+YwqqPv4tzz4DkCM/Hdq2PnYwPr5ToWm+GP9AP472xz5HSkS/lGglPthhhj+5TME+qEUbP3NKvr0ocoC/tjzZPryNEj8gzfE9zH6GP98xqj2lF5u+z6hivPzO0z65qyA/bhDDPuFExD7rlVy/KPDSP170bL/Ez7A+nZDxvjyBlT7PkgC+YrlwvvBULz+FTsC+hMsqv0A33zvaYiI/B6cwv6e4CT8La7q98xEFvqy24r6hLw8/I9otvSK4Fr+SrQa/P/iYvi+5mr38ztM+uasgP24Qwz7hRMQ+Pa93v93VHj+w9kM+QtvevDVRG79qFBs+hYM5vh1Wcb6RktC/HC9uPcC9Q79uLli9u6EiPwydBr+Lvho/Z7RmPebggb9v582+oUESP7fK6zw4zqA/DripPT0wlL7PlWo+/M7TPrmrID9uEMM+4UTEPoOBfL+jIg0/t8ttPhQ2Ab3xOZa8WtpKPrQP1Tz7LZq+5mbNvxsdgDw5UCu/3UN6vQ6Lkj//sdw82QsbP7Ppdz1UolC/77HbOy0TMj9CzHQ9rpujP2G6QL2745m+BDCWvfzO0z65qyA/bhDDPuFExD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACsrpk1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADtK3vAAAAABO/PW/AAAAAGrhtr0AAAAAZ+oAQAAAAAA6oQM+AAAAAIdD/D8AAAAAobzoOwAAAAA+uP6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhuSbtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJUS8L0AAAAA9EbxvwAAAADiruw8AAAAALBo6j8AAAAAUN3CvQAAAADrNf0/AAAAAAIwgj0AAAAAkojsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALDceTQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICJeYq9AAAAAOfo+78AAAAAuPCLvQAAAAANdd4/AAAAAGf0e70AAAAAm8/3PwAAAAA6h5K9AAAAAP4U+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7Wou1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAVcoHvAAAAACBitu/AAAAAEvysb0AAAAAXQX4PwAAAADa2IA8AAAAAHV+2z8AAAAAqq9lvAAAAABUzvu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC7nbh3qzKMAWyUTegDjAF0lEdAq+cvdVNpNHV9lChoBkdAc+tGxlg+hWgHTegDaAhHQKvsJvddmg91fZQoaAZHQHEgCo86mwdoB03oA2gIR0Cr7diiAUcodX2UKGgGR0CFNs64Ds+naAdN6ANoCEdAq+9kXHim23V9lChoBkdAgtMa3iJfpmgHTegDaAhHQKvzhHOKO1h1fZQoaAZHQHLM/GACnxdoB03oA2gIR0Cr+KWLYPGydX2UKGgGR0B+rviOvMbFaAdN6ANoCEdAq/p16/qPfnV9lChoBkdAewONwiqyW2gHTegDaAhHQKv8AMy8BdV1fZQoaAZHQG4G5avA44poB03oA2gIR0CsACsdDIBBdX2UKGgGR0B6mA7DEWIoaAdN6ANoCEdArAUbtiQT23V9lChoBkdAedQGj9GZu2gHTcoDaAhHQKwGfQxesxR1fZQoaAZHQHeLvNZ/0/ZoB03oA2gIR0CsCGT+m3vydX2UKGgGR0B9t8tL+PzWaAdN6ANoCEdArAxVkOI683V9lChoBkdAdtZE6T4cm2gHTegDaAhHQKwRRiGWUr11fZQoaAZHQHiYfjS5RTFoB03oA2gIR0CsEqNpmEoOdX2UKGgGR0B7fOHbh3qzaAdN6ANoCEdArBSIymALA3V9lChoBkdAghDVf3N9pmgHTegDaAhHQKwYfyIYWLx1fZQoaAZHQIe+JJNCZ4RoB03oA2gIR0CsHWu1WsBAdX2UKGgGR0CELs/gzguRaAdN6ANoCEdArB7PcnE2pHV9lChoBkdAfnGnEl3QlmgHTegDaAhHQKwgsKMvRJF1fZQoaAZHQIXJEh/y5I9oB03oA2gIR0CsJLnhCMP0dX2UKGgGR0B4nC9zwMH9aAdN6ANoCEdArCm8Y2sJY3V9lChoBkdAeKarRBu4w2gHTegDaAhHQKwrJOKwY+B1fZQoaAZHQHSZoiLVFx5oB03oA2gIR0CsLQrzXjEOdX2UKGgGR0Bscsl9jPOZaAdN6ANoCEdArDEM6FM7EHV9lChoBkdAgjy8HGCI12gHTegDaAhHQKw2EVtXPqt1fZQoaAZHQGAwGfGuLaVoB036AWgIR0CsN1CcXm/4dX2UKGgGR0CB23SlWOp9aAdN6ANoCEdArDdzpHI6sHV9lChoBkdAeDh5Lh73PGgHTegDaAhHQKw5X9aUzKt1fZQoaAZHQHhjjuWrwORoB03oA2gIR0CsQlqLCN0edX2UKGgGR0B9V4FMZgogaAdN6ANoCEdArEOVuvUz9HV9lChoBkdAhGzV32VVxWgHTegDaAhHQKxDuI+GGmF1fZQoaAZHQH+pw6ZH/cZoB03oA2gIR0CsRZ9eyAx0dX2UKGgGR0CChNfReC04aAdN6ANoCEdArE6gsZpBX3V9lChoBkdAfWG76Hj6vmgHTegDaAhHQKxP3P0qYqp1fZQoaAZHQIFRPa+N96VoB03oA2gIR0CsT/74zrNXdX2UKGgGR0CBucrCm/FjaAdN6ANoCEdArFHWHgxagXV9lChoBkdAXByij+Jgs2gHTQcBaAhHQKxVApKjBVN1fZQoaAZHQGcAtWuHN5doB03KAWgIR0CsVYXOObRXdX2UKGgGR0B/sGvQnhKlaAdN6ANoCEdArFrREMLF43V9lChoBkdAfuboWHk92WgHTegDaAhHQKxcDipeeFt1fZQoaAZHQIFW64H5aeRoB03oA2gIR0CsYWEBjnV5dX2UKGgGR0B3h1D9fkWAaAdN6ANoCEdArGHauQp4KXV9lChoBkdAgICOqebut2gHTegDaAhHQKxnFYSQHRl1fZQoaAZHQID7Z8OTaCdoB03oA2gIR0CsaFGcvugIdX2UKGgGR0B0FSDUVi4KaAdNxwJoCEdArGqd7IDHO3V9lChoBkdAgRRzmwJPZmgHTegDaAhHQKxtmTxoZht1fZQoaAZHQHls7j5sTFloB03oA2gIR0Csc41Aqur7dX2UKGgGR0ByX5VIZqEfaAdN6ANoCEdArHTmCf6Gg3V9lChoBkdAeZZOQyRB/2gHTegDaAhHQKx3MKpDNQl1fZQoaAZHQHte2JBPbfxoB03oA2gIR0Csejrk0aZQdX2UKGgGR0Bf1JHRTjvNaAdNcgFoCEdArHuzbg0j1XV9lChoBkdAc1eY8Md92GgHTegDaAhHQKyABxn3+Mt1fZQoaAZHQIJn92s7uD1oB03oA2gIR0CsgUUYj0L/dX2UKGgGR0Bwh9vWH1vmaAdN6ANoCEdArIaMz67/XHV9lChoBkdAebbB2wFC9mgHTegDaAhHQKyICx5cC5p1fZQoaAZHQHJtVnZkCmxoB03oA2gIR0CsjGNpVS4wdX2UKGgGR0B5ax7/n4fwaAdN6ANoCEdArI2bn1WbPXV9lChoBkdAgWJkVN5+pmgHTegDaAhHQKyS2y0rsjV1fZQoaAZHQH9d40hvBJtoB03oA2gIR0CslFI1DSgHdX2UKGgGR0BxFtAeJYT1aAdN6ANoCEdArJixKODJ2nV9lChoBkdAb8kJhvze42gHTegDaAhHQKyZ79uxbB51fZQoaAZHQG9D4AbQ1JloB03oA2gIR0Csnyhx5s0pdX2UKGgGR0B6aXmuDBdlaAdN6ANoCEdArKCs23rleXV9lChoBkdAgnyrmhdt22gHTegDaAhHQKyk7Eehf0F1fZQoaAZHQHmSBy0a6z5oB03oA2gIR0CspjEJSiuddX2UKGgGR0Bxo7KlpGnXaAdN6ANoCEdArKuSZ8a4t3V9lChoBkdAeNZbo8p1BGgHTegDaAhHQKytDQQcxTN1fZQoaAZHQHPpmhZha1VoB03oA2gIR0CssXXevZAZdX2UKGgGR0CBNg/D+BH1aAdN6ANoCEdArLK2thd+onV9lChoBkdAe2P74zrNW2gHTegDaAhHQKy39KAavRt1fZQoaAZHQH4OKT0QK8doB03oA2gIR0CsuXcQ7LdOdX2UKGgGR0CBjlWVeKKpaAdN6ANoCEdArL3D4Ju2qnV9lChoBkdAcvEnQpnYhGgHTegDaAhHQKy/C++ueSV1fZQoaAZHQIKNG0/nnuBoB03oA2gIR0CsxDfoaDPGdX2UKGgGR0B1e6W9lEqlaAdN6ANoCEdArMWweT3Zf3V9lChoBkdAgfVSZa3ZwmgHTegDaAhHQKzJ7rY5DJF1fZQoaAZHQH9UPE87p3ZoB03oA2gIR0CsyzKWLP2PdX2UKGgGR0CDlxJ/XoTxaAdN6ANoCEdArNBnqVyFPHV9lChoBkdAgQnDJU5uImgHTegDaAhHQKzR5Rb8m8d1fZQoaAZHQIGk5ib2Dg9oB03oA2gIR0Cs1iaMBIWhdX2UKGgGR0CBpsVxjriVaAdN6ANoCEdArNdpxgiNbXV9lChoBkdAge/L/bTMJWgHTegDaAhHQKzcoQr+YMR1fZQoaAZHQIFwxDCxeLNoB03oA2gIR0Cs3hsJIDoydX2UKGgGR0CCP9T3qRlpaAdN6ANoCEdArOJmdkJ8fHV9lChoBkdAgRx15KODJ2gHTegDaAhHQKzjrz/ZM+N1fZQoaAZHQIDY1u1ndwhoB03oA2gIR0Cs6Np48loldX2UKGgGR0CDtonm7rcCaAdN6ANoCEdArOpYO8TSLXV9lChoBkdAgHRR/EwWWWgHTegDaAhHQKzuvYuCf6J1fZQoaAZHQIGMApMHryFoB03oA2gIR0Cs7/U8/2TQdX2UKGgGR0CAYU1a4c3maAdN6ANoCEdArPU1onKGL3V9lChoBkdAdHGY/3WWhWgHTegDaAhHQKz2tvqC6H11fZQoaAZHQIFvST+vQnhoB03oA2gIR0Cs+vc3VCokdX2UKGgGR0B+YrI+4b0faAdN6ANoCEdArPwu9YfW+XV9lChoBkdAgiZddmg8KWgHTegDaAhHQK0BYYb83uN1fZQoaAZHQICxijesPrhoB03oA2gIR0CtAuCZfD1odX2UKGgGR0CBl3oq0+khaAdN6ANoCEdArQcbILgGbHV9lChoBkdAgZlGrbQC0WgHTegDaAhHQK0IYQUYbbV1fZQoaAZHQHUyBas6q81oB03oA2gIR0CtDZwOWjXWdX2UKGgGR0B+j/Zi/fwaaAdN6ANoCEdArQ8iLZSNwXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62661, "n_steps": 8, "gamma": 0.98, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f462f880700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f462f880790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f462f880820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f462f8808b0>", "_build": "<function ActorCriticPolicy._build at 0x7f462f880940>", "forward": "<function ActorCriticPolicy.forward at 0x7f462f8809d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f462f880a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f462f880af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f462f880b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f462f880c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f462f880ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f462f880d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f462f87e4e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674406744907049052, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAANTvT9FW4q/jQrdPRpFaD9Je3i/e2Lcvi+D6L98ngy/w28eP6u6xLwE+Hi/O/J/OhOQnr6I6II/u641PyB607/8PNK/A96OP45grL+rtYa/gBEbvzNMUr7Giz4/NU+xP7Xefr/A1ww/DlrUvwqQeb+U+5A+7K5Vv4xgkj4IR8k+5FUfP+Ptrz+Gi2K9VjmCv4nnHT8Zw+C81AmCvuRkfL7ZxTI/ZpNvP0hWUT+3k8g93TmHPwIMB0CJ2mg+P5EAvosmEz9Yor++1tPKP09yYz613n6/wNcMPw5a1L88TYM/mzK8vkjgH78hXso+4kPuPQ6lszxhPwA/1lhQv6EXqz7RJh4/ipB5vHKleL8EyNq7dH3WvjC1nT/p9QM/CtUoPgRGJT1afgpAIF47vjI1iT7aBR2/rEhpPrFwGT/kj14+td5+v8DXDD8OWtS/PE2DPwFJcD+ysJu/Eo13vIO74j7+0PO/uruCv8tZLL8tclc/ch0ePybINb1oxPA9VYe8vdKiqb95yXY9n2wSvyjzhz6uMQPAK/bXv8rY97+Q8fw+jwgnv/hrOb1fnHK/7sEXP0mRgD/A1ww/W08aPwqQeb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACQZXm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuj+JPQAAAABYm9u/AAAAAB6AlL0AAAAAi+HYPwAAAAAvlYA8AAAAAJGq4j8AAAAA5aMlPQAAAACFR9y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF9e3tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMsFOD0AAAAAb7PtvwAAAAAsHJW9AAAAAHZF9T8AAAAAkt2WPAAAAACZWd8/AAAAAC0JBz4AAAAAcZzzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJY9BrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICsGo09AAAAAIEd/b8AAAAAFEtKPQAAAABqaeQ/AAAAADTn7bwAAAAABbPqPwAAAACrph49AAAAAGkTAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABG10w2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHtMtvQAAAADYIdq/AAAAACXbBj0AAAAAS9nxPwAAAAAivTy9AAAAACtC7T8AAAAArnTVvQAAAAAcEfi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJSFI3FUADKMAWyUTegDjAF0lEdAp6v0stkFwHV9lChoBkdAmhlTviLl3mgHTegDaAhHQKetirsByS51fZQoaAZHQJp0wCbMHKRoB03oA2gIR0Cnrs2iDdxidX2UKGgGR0CZjNG8VYZEaAdN6ANoCEdAp68plSS/03V9lChoBkdAl+KE7Sy+pWgHTegDaAhHQKe4ab83uNR1fZQoaAZHQJ4EbXbuc+doB03oA2gIR0CnugLiMo+fdX2UKGgGR0CcKpPxhDw6aAdN6ANoCEdAp7tDDqGDc3V9lChoBkdAnEa+YlY2bWgHTegDaAhHQKe7mEQoTf11fZQoaAZHQJ5EzMcIZ65oB03oA2gIR0CnxN/4yoGZdX2UKGgGR0CfFwNZvDP4aAdN6ANoCEdAp8aEEaESNHV9lChoBkdAn5NUpI+W4WgHTegDaAhHQKfH1aKUFB91fZQoaAZHQJ9b28Yht+FoB03oA2gIR0CnyDLO7g89dX2UKGgGR0CcHBP9DQZ5aAdN6ANoCEdAp9F7NGEwnHV9lChoBkdAm5taMR6F/WgHTegDaAhHQKfTJ7laKUF1fZQoaAZHQJrczHktEohoB03oA2gIR0Cn1HHkkrwwdX2UKGgGR0CbOJ2xIJ7caAdN6ANoCEdAp9TJLqUu+XV9lChoBkdAoB979ZRsM2gHTegDaAhHQKfd9RKHwgF1fZQoaAZHQJ7HF6v7m+1oB03oA2gIR0Cn35Ar6LwXdX2UKGgGR0Cfd3RdQfp2aAdN6ANoCEdAp+Dfx4IKMXV9lChoBkdAn7vHgHeJpGgHTegDaAhHQKfhN0EHMU11fZQoaAZHQJz7ORbKRuFoB03oA2gIR0Cn6nSntOVPdX2UKGgGR0CctlLVnVXnaAdN6ANoCEdAp+weZPVNH3V9lChoBkdAntoFX/5tWWgHTegDaAhHQKftaIYWLxZ1fZQoaAZHQJ/JQJw84gloB03oA2gIR0Cn7cJHy3CsdX2UKGgGR0CdfhR+BpYcaAdN6ANoCEdAp/cDmOlwcnV9lChoBkdAoDcWXRgJC2gHTegDaAhHQKf4pbL2YfJ1fZQoaAZHQJ7bIUxmCiBoB03oA2gIR0Cn+eyfL9uQdX2UKGgGR0CegIzIFNcoaAdN6ANoCEdAp/pFYOlO5HV9lChoBkdAnmdCElE7XGgHTegDaAhHQKgDa3GXHBF1fZQoaAZHQKAPaQEIPbxoB03oA2gIR0CoBQeq7yxzdX2UKGgGR0CFVGXlbNbDaAdN6ANoCEdAqAZYFPi1iXV9lChoBkdAoEw65oXbd2gHTegDaAhHQKgGsJhvze51fZQoaAZHQKAF/UTcqONoB03oA2gIR0CoD9IdELH/dX2UKGgGR0CeE+Zv1lGxaAdN6ANoCEdAqBFz9qDbrXV9lChoBkdAnW8VOTJQtWgHTegDaAhHQKgSvrsSkCV1fZQoaAZHQJ+Vd5MURFtoB03oA2gIR0CoExQpWmxddX2UKGgGR0CgCj4+0PYnaAdN6ANoCEdAqBwjKNhmXnV9lChoBkdAn52yZWq95GgHTegDaAhHQKgdys8xKxt1fZQoaAZHQJV1kZCOWB1oB03oA2gIR0CoHwdCeEqUdX2UKGgGR0CbusJ2t+1CaAdN6ANoCEdAqB9ZoIv8InV9lChoBkdAoLnmpMpPRGgHTegDaAhHQKgoVNUwSJ11fZQoaAZHQJ/dDAVO9FpoB03oA2gIR0CoKep8v24/dX2UKGgGR0CgAcA+Y+jeaAdN6ANoCEdAqCss6BAfMnV9lChoBkdAmnKUwztTk2gHTegDaAhHQKgrhAtWdVh1fZQoaAZHQJ0ALATIvJ1oB03oA2gIR0CoNLJKraM8dX2UKGgGR0CaCsaG5+YuaAdN6ANoCEdAqDZEcp9ZzXV9lChoBkdAnvfKeGwiaGgHTegDaAhHQKg3iTCcf/51fZQoaAZHQJxpFirksBhoB03oA2gIR0CoN92UjcEedX2UKGgGR0CXiNL9uP3jaAdN6ANoCEdAqEEBd0JWvXV9lChoBkdAnnfsdT5wfmgHTegDaAhHQKhCmHoouwp1fZQoaAZHQJySMu01IiFoB03oA2gIR0CoQ+gjyFwldX2UKGgGR0CckozguRLcaAdN6ANoCEdAqEQ+KQ7tA3V9lChoBkdAnfhDH4oJA2gHTegDaAhHQKhNf8WKuSx1fZQoaAZHQJxZ/p3X7LtoB03oA2gIR0CoTyXFkxyodX2UKGgGR0CdohjqOcUeaAdN6ANoCEdAqFBrTx5LRXV9lChoBkdAnPnz5j6N2mgHTegDaAhHQKhQw2G7Bft1fZQoaAZHQJeZ2fChvitoB03oA2gIR0CoWhn8CPp7dX2UKGgGR0CcVyWcSXdCaAdN6ANoCEdAqFvB93KSxXV9lChoBkdAn2QbY9Pk72gHTegDaAhHQKhdFg4Otnx1fZQoaAZHQIviPoHLRrtoB03oA2gIR0CoXWxBmf5DdX2UKGgGR0Cevo8yeqaPaAdN6ANoCEdAqGav9gnc+XV9lChoBkdAnXzHKwIMSmgHTegDaAhHQKhoZK/20zF1fZQoaAZHQJ9kXu1F6RhoB03oA2gIR0CoacQeeWfLdX2UKGgGR0Ce4W+/QBxQaAdN6ANoCEdAqGofcJtzjnV9lChoBkdAoFTEH+qBE2gHTegDaAhHQKhzWeFtbcJ1fZQoaAZHQKBw5JZGKAJoB03oA2gIR0CodPy5iExqdX2UKGgGR0CgrqgWrOqvaAdN6ANoCEdAqHZVaB7NS3V9lChoBkdAoMtKU3XI2mgHTegDaAhHQKh2rrZ8KHB1fZQoaAZHQKAOdZYgaFVoB03oA2gIR0CogAcsMAmzdX2UKGgGR0CeYJMCcPOIaAdN6ANoCEdAqIGltsN2DHV9lChoBkdAmYFTTrmhd2gHTegDaAhHQKiC6L0Bfa91fZQoaAZHQJ5TDRRdhRZoB03oA2gIR0Cog0H+6y0KdX2UKGgGR0CcUUBZZB9kaAdN6ANoCEdAqIxIGdI5HXV9lChoBkdAoAo6be/HpGgHTegDaAhHQKiN3rKNhmZ1fZQoaAZHQJu3cEV32VVoB03oA2gIR0Cojxs98qnWdX2UKGgGR0Cc/6Oq//NraAdN6ANoCEdAqI9yrYGt63V9lChoBkdAnp9weeWfLGgHTegDaAhHQKiYq36yjYZ1fZQoaAZHQKBYM/0ulGhoB03oA2gIR0Comj5COWB0dX2UKGgGR0Cgd4lSsKb8aAdN6ANoCEdAqJt/uw5eaHV9lChoBkdAoLNaxeLNwGgHTegDaAhHQKib1C/oJRh1fZQoaAZHQJweGMfigkFoB03oA2gIR0CopPmTLW7OdX2UKGgGR0CgLovAwfyPaAdN6ANoCEdAqKaubb1yvXV9lChoBkdAnX3HenAIp2gHTegDaAhHQKin8eRPoFF1fZQoaAZHQJ/V2GSIP9VoB03oA2gIR0CoqEbUXpGGdX2UKGgGR0Cdl9axX4j9aAdN6ANoCEdAqLFgaBI4EXV9lChoBkdAnpAtkrf+CWgHTegDaAhHQKizADe0ojR1fZQoaAZHQJ4AYo3Jgb9oB03oA2gIR0CotESOR1YAdX2UKGgGR0Cg3ShxxT86aAdN6ANoCEdAqLSeYBvJinV9lChoBkdAne/XWWhRImgHTegDaAhHQKi9trC3w1B1fZQoaAZHQJ+YBdzGPxRoB03oA2gIR0Cov1et0V8DdX2UKGgGR0CgBWS00FbFaAdN6ANoCEdAqMCgp6QeWHV9lChoBkdAoE1jW5H3DmgHTegDaAhHQKjA+58Sf191fZQoaAZHQJ6oVTdcjaBoB03oA2gIR0Coynmm+CbudX2UKGgGR0Caa8kgOjIraAdN6ANoCEdAqMwalYU343V9lChoBkdAm7HkXk5p8GgHTegDaAhHQKjNadOqNqB1fZQoaAZHQJ1L/Aaef7JoB03oA2gIR0CozcCl7+kydX2UKGgGR0CZLhcXFcY7aAdN6ANoCEdAqNbtBQemvXV9lChoBkdAm1mEGmk30mgHTegDaAhHQKjYklzltCR1fZQoaAZHQJWZiM5wOvtoB03oA2gIR0Co2dwT/Q0GdX2UKGgGR0CZWm3j+717aAdN6ANoCEdAqNozDdgv13VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 446.817867591558, "std_reward": 124.07886163371344, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T13:30:13.151336"}
 
1
+ {"mean_reward": 1825.8811837160029, "std_reward": 114.01479694958701, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T18:03:11.169845"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8c5d33cc1cc0bbb1aa151d844952307b41cf522139ff853fd800d0806615f4b8
3
  size 2136
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d048ebcddf0ec1f7999cce882c261e9dd2e2d24a3df85d2d5bb3e71783864129
3
  size 2136