marianokamp
commited on
Commit
•
7b0c2e0
1
Parent(s):
49d6c42
Initial commit
Browse files- .gitattributes +1 -0
- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +27 -29
- a2c-AntBulletEnv-v0/policy.optimizer.pth +2 -2
- a2c-AntBulletEnv-v0/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1825.88 +/- 114.01
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c869d34e397bb58cdf39de47e7fe868478cf2f4d2b7f691236b429cb34e8ae20
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,29 +4,27 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
24 |
":type:": "<class 'dict'>",
|
25 |
-
":serialized:": "
|
26 |
-
"
|
27 |
-
|
28 |
-
300
|
29 |
-
],
|
30 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
31 |
"optimizer_kwargs": {
|
32 |
"alpha": 0.99,
|
@@ -66,16 +64,16 @@
|
|
66 |
"_num_timesteps_at_start": 0,
|
67 |
"seed": null,
|
68 |
"action_noise": null,
|
69 |
-
"start_time":
|
70 |
-
"learning_rate": 0.
|
71 |
"tensorboard_log": null,
|
72 |
"lr_schedule": {
|
73 |
":type:": "<class 'function'>",
|
74 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
75 |
},
|
76 |
"_last_obs": {
|
77 |
":type:": "<class 'numpy.ndarray'>",
|
78 |
-
":serialized:": "
|
79 |
},
|
80 |
"_last_episode_starts": {
|
81 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -83,26 +81,26 @@
|
|
83 |
},
|
84 |
"_last_original_obs": {
|
85 |
":type:": "<class 'numpy.ndarray'>",
|
86 |
-
":serialized:": "
|
87 |
},
|
88 |
"_episode_num": 0,
|
89 |
-
"use_sde":
|
90 |
"sde_sample_freq": -1,
|
91 |
"_current_progress_remaining": 0.0,
|
92 |
"ep_info_buffer": {
|
93 |
":type:": "<class 'collections.deque'>",
|
94 |
-
":serialized:": "
|
95 |
},
|
96 |
"ep_success_buffer": {
|
97 |
":type:": "<class 'collections.deque'>",
|
98 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
99 |
},
|
100 |
-
"_n_updates":
|
101 |
"n_steps": 8,
|
102 |
-
"gamma": 0.
|
103 |
-
"gae_lambda":
|
104 |
"ent_coef": 0.0,
|
105 |
-
"vf_coef": 0.
|
106 |
"max_grad_norm": 0.5,
|
107 |
"normalize_advantage": false
|
108 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f462f880700>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f462f880790>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f462f880820>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f462f8808b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f462f880940>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f462f8809d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f462f880a60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f462f880af0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f462f880b80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f462f880c10>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f462f880ca0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f462f880d30>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f462f87e4e0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
24 |
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
|
|
|
|
28 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
"optimizer_kwargs": {
|
30 |
"alpha": 0.99,
|
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
+
"start_time": 1674406744907049052,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
71 |
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAANTvT9FW4q/jQrdPRpFaD9Je3i/e2Lcvi+D6L98ngy/w28eP6u6xLwE+Hi/O/J/OhOQnr6I6II/u641PyB607/8PNK/A96OP45grL+rtYa/gBEbvzNMUr7Giz4/NU+xP7Xefr/A1ww/DlrUvwqQeb+U+5A+7K5Vv4xgkj4IR8k+5FUfP+Ptrz+Gi2K9VjmCv4nnHT8Zw+C81AmCvuRkfL7ZxTI/ZpNvP0hWUT+3k8g93TmHPwIMB0CJ2mg+P5EAvosmEz9Yor++1tPKP09yYz613n6/wNcMPw5a1L88TYM/mzK8vkjgH78hXso+4kPuPQ6lszxhPwA/1lhQv6EXqz7RJh4/ipB5vHKleL8EyNq7dH3WvjC1nT/p9QM/CtUoPgRGJT1afgpAIF47vjI1iT7aBR2/rEhpPrFwGT/kj14+td5+v8DXDD8OWtS/PE2DPwFJcD+ysJu/Eo13vIO74j7+0PO/uruCv8tZLL8tclc/ch0ePybINb1oxPA9VYe8vdKiqb95yXY9n2wSvyjzhz6uMQPAK/bXv8rY97+Q8fw+jwgnv/hrOb1fnHK/7sEXP0mRgD/A1ww/W08aPwqQeb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACQZXm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuj+JPQAAAABYm9u/AAAAAB6AlL0AAAAAi+HYPwAAAAAvlYA8AAAAAJGq4j8AAAAA5aMlPQAAAACFR9y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF9e3tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMsFOD0AAAAAb7PtvwAAAAAsHJW9AAAAAHZF9T8AAAAAkt2WPAAAAACZWd8/AAAAAC0JBz4AAAAAcZzzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJY9BrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICsGo09AAAAAIEd/b8AAAAAFEtKPQAAAABqaeQ/AAAAADTn7bwAAAAABbPqPwAAAACrph49AAAAAGkTAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABG10w2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHtMtvQAAAADYIdq/AAAAACXbBj0AAAAAS9nxPwAAAAAivTy9AAAAACtC7T8AAAAArnTVvQAAAAAcEfi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
"sde_sample_freq": -1,
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJSFI3FUADKMAWyUTegDjAF0lEdAp6v0stkFwHV9lChoBkdAmhlTviLl3mgHTegDaAhHQKetirsByS51fZQoaAZHQJp0wCbMHKRoB03oA2gIR0Cnrs2iDdxidX2UKGgGR0CZjNG8VYZEaAdN6ANoCEdAp68plSS/03V9lChoBkdAl+KE7Sy+pWgHTegDaAhHQKe4ab83uNR1fZQoaAZHQJ4EbXbuc+doB03oA2gIR0CnugLiMo+fdX2UKGgGR0CcKpPxhDw6aAdN6ANoCEdAp7tDDqGDc3V9lChoBkdAnEa+YlY2bWgHTegDaAhHQKe7mEQoTf11fZQoaAZHQJ5EzMcIZ65oB03oA2gIR0CnxN/4yoGZdX2UKGgGR0CfFwNZvDP4aAdN6ANoCEdAp8aEEaESNHV9lChoBkdAn5NUpI+W4WgHTegDaAhHQKfH1aKUFB91fZQoaAZHQJ9b28Yht+FoB03oA2gIR0CnyDLO7g89dX2UKGgGR0CcHBP9DQZ5aAdN6ANoCEdAp9F7NGEwnHV9lChoBkdAm5taMR6F/WgHTegDaAhHQKfTJ7laKUF1fZQoaAZHQJrczHktEohoB03oA2gIR0Cn1HHkkrwwdX2UKGgGR0CbOJ2xIJ7caAdN6ANoCEdAp9TJLqUu+XV9lChoBkdAoB979ZRsM2gHTegDaAhHQKfd9RKHwgF1fZQoaAZHQJ7HF6v7m+1oB03oA2gIR0Cn35Ar6LwXdX2UKGgGR0Cfd3RdQfp2aAdN6ANoCEdAp+Dfx4IKMXV9lChoBkdAn7vHgHeJpGgHTegDaAhHQKfhN0EHMU11fZQoaAZHQJz7ORbKRuFoB03oA2gIR0Cn6nSntOVPdX2UKGgGR0CctlLVnVXnaAdN6ANoCEdAp+weZPVNH3V9lChoBkdAntoFX/5tWWgHTegDaAhHQKftaIYWLxZ1fZQoaAZHQJ/JQJw84gloB03oA2gIR0Cn7cJHy3CsdX2UKGgGR0CdfhR+BpYcaAdN6ANoCEdAp/cDmOlwcnV9lChoBkdAoDcWXRgJC2gHTegDaAhHQKf4pbL2YfJ1fZQoaAZHQJ7bIUxmCiBoB03oA2gIR0Cn+eyfL9uQdX2UKGgGR0CegIzIFNcoaAdN6ANoCEdAp/pFYOlO5HV9lChoBkdAnmdCElE7XGgHTegDaAhHQKgDa3GXHBF1fZQoaAZHQKAPaQEIPbxoB03oA2gIR0CoBQeq7yxzdX2UKGgGR0CFVGXlbNbDaAdN6ANoCEdAqAZYFPi1iXV9lChoBkdAoEw65oXbd2gHTegDaAhHQKgGsJhvze51fZQoaAZHQKAF/UTcqONoB03oA2gIR0CoD9IdELH/dX2UKGgGR0CeE+Zv1lGxaAdN6ANoCEdAqBFz9qDbrXV9lChoBkdAnW8VOTJQtWgHTegDaAhHQKgSvrsSkCV1fZQoaAZHQJ+Vd5MURFtoB03oA2gIR0CoExQpWmxddX2UKGgGR0CgCj4+0PYnaAdN6ANoCEdAqBwjKNhmXnV9lChoBkdAn52yZWq95GgHTegDaAhHQKgdys8xKxt1fZQoaAZHQJV1kZCOWB1oB03oA2gIR0CoHwdCeEqUdX2UKGgGR0CbusJ2t+1CaAdN6ANoCEdAqB9ZoIv8InV9lChoBkdAoLnmpMpPRGgHTegDaAhHQKgoVNUwSJ11fZQoaAZHQJ/dDAVO9FpoB03oA2gIR0CoKep8v24/dX2UKGgGR0CgAcA+Y+jeaAdN6ANoCEdAqCss6BAfMnV9lChoBkdAmnKUwztTk2gHTegDaAhHQKgrhAtWdVh1fZQoaAZHQJ0ALATIvJ1oB03oA2gIR0CoNLJKraM8dX2UKGgGR0CaCsaG5+YuaAdN6ANoCEdAqDZEcp9ZzXV9lChoBkdAnvfKeGwiaGgHTegDaAhHQKg3iTCcf/51fZQoaAZHQJxpFirksBhoB03oA2gIR0CoN92UjcEedX2UKGgGR0CXiNL9uP3jaAdN6ANoCEdAqEEBd0JWvXV9lChoBkdAnnfsdT5wfmgHTegDaAhHQKhCmHoouwp1fZQoaAZHQJySMu01IiFoB03oA2gIR0CoQ+gjyFwldX2UKGgGR0CckozguRLcaAdN6ANoCEdAqEQ+KQ7tA3V9lChoBkdAnfhDH4oJA2gHTegDaAhHQKhNf8WKuSx1fZQoaAZHQJxZ/p3X7LtoB03oA2gIR0CoTyXFkxyodX2UKGgGR0CdohjqOcUeaAdN6ANoCEdAqFBrTx5LRXV9lChoBkdAnPnz5j6N2mgHTegDaAhHQKhQw2G7Bft1fZQoaAZHQJeZ2fChvitoB03oA2gIR0CoWhn8CPp7dX2UKGgGR0CcVyWcSXdCaAdN6ANoCEdAqFvB93KSxXV9lChoBkdAn2QbY9Pk72gHTegDaAhHQKhdFg4Otnx1fZQoaAZHQIviPoHLRrtoB03oA2gIR0CoXWxBmf5DdX2UKGgGR0Cevo8yeqaPaAdN6ANoCEdAqGav9gnc+XV9lChoBkdAnXzHKwIMSmgHTegDaAhHQKhoZK/20zF1fZQoaAZHQJ9kXu1F6RhoB03oA2gIR0CoacQeeWfLdX2UKGgGR0Ce4W+/QBxQaAdN6ANoCEdAqGofcJtzjnV9lChoBkdAoFTEH+qBE2gHTegDaAhHQKhzWeFtbcJ1fZQoaAZHQKBw5JZGKAJoB03oA2gIR0CodPy5iExqdX2UKGgGR0CgrqgWrOqvaAdN6ANoCEdAqHZVaB7NS3V9lChoBkdAoMtKU3XI2mgHTegDaAhHQKh2rrZ8KHB1fZQoaAZHQKAOdZYgaFVoB03oA2gIR0CogAcsMAmzdX2UKGgGR0CeYJMCcPOIaAdN6ANoCEdAqIGltsN2DHV9lChoBkdAmYFTTrmhd2gHTegDaAhHQKiC6L0Bfa91fZQoaAZHQJ5TDRRdhRZoB03oA2gIR0Cog0H+6y0KdX2UKGgGR0CcUUBZZB9kaAdN6ANoCEdAqIxIGdI5HXV9lChoBkdAoAo6be/HpGgHTegDaAhHQKiN3rKNhmZ1fZQoaAZHQJu3cEV32VVoB03oA2gIR0Cojxs98qnWdX2UKGgGR0Cc/6Oq//NraAdN6ANoCEdAqI9yrYGt63V9lChoBkdAnp9weeWfLGgHTegDaAhHQKiYq36yjYZ1fZQoaAZHQKBYM/0ulGhoB03oA2gIR0Comj5COWB0dX2UKGgGR0Cgd4lSsKb8aAdN6ANoCEdAqJt/uw5eaHV9lChoBkdAoLNaxeLNwGgHTegDaAhHQKib1C/oJRh1fZQoaAZHQJweGMfigkFoB03oA2gIR0CopPmTLW7OdX2UKGgGR0CgLovAwfyPaAdN6ANoCEdAqKaubb1yvXV9lChoBkdAnX3HenAIp2gHTegDaAhHQKin8eRPoFF1fZQoaAZHQJ/V2GSIP9VoB03oA2gIR0CoqEbUXpGGdX2UKGgGR0Cdl9axX4j9aAdN6ANoCEdAqLFgaBI4EXV9lChoBkdAnpAtkrf+CWgHTegDaAhHQKizADe0ojR1fZQoaAZHQJ4AYo3Jgb9oB03oA2gIR0CotESOR1YAdX2UKGgGR0Cg3ShxxT86aAdN6ANoCEdAqLSeYBvJinV9lChoBkdAne/XWWhRImgHTegDaAhHQKi9trC3w1B1fZQoaAZHQJ+YBdzGPxRoB03oA2gIR0Cov1et0V8DdX2UKGgGR0CgBWS00FbFaAdN6ANoCEdAqMCgp6QeWHV9lChoBkdAoE1jW5H3DmgHTegDaAhHQKjA+58Sf191fZQoaAZHQJ6oVTdcjaBoB03oA2gIR0Coynmm+CbudX2UKGgGR0Caa8kgOjIraAdN6ANoCEdAqMwalYU343V9lChoBkdAm7HkXk5p8GgHTegDaAhHQKjNadOqNqB1fZQoaAZHQJ1L/Aaef7JoB03oA2gIR0CozcCl7+kydX2UKGgGR0CZLhcXFcY7aAdN6ANoCEdAqNbtBQemvXV9lChoBkdAm1mEGmk30mgHTegDaAhHQKjYklzltCR1fZQoaAZHQJWZiM5wOvtoB03oA2gIR0Co2dwT/Q0GdX2UKGgGR0CZWm3j+717aAdN6ANoCEdAqNozDdgv13VlLg=="
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
96 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
},
|
98 |
+
"_n_updates": 62500,
|
99 |
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
"max_grad_norm": 0.5,
|
105 |
"normalize_advantage": false
|
106 |
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34d71e02a18e1ffa92de2ff22e8cf942ec2217ec66a4ff583004057fa40af9eb
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e70ab443e3aecb300fd22587bf327f762017476060a9382cc5fa1a072c9a1f4
|
3 |
+
size 56958
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f67f3b49700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f67f3b49790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f67f3b49820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f67f3b498b0>", "_build": "<function ActorCriticPolicy._build at 0x7f67f3b49940>", "forward": "<function ActorCriticPolicy.forward at 0x7f67f3b499d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f67f3b49a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f67f3b49af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f67f3b49b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f67f3b49c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f67f3b49ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f67f3b49d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f67f3b463f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVlgAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE2QAU0sAWWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "net_arch": [400, 300], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674391039816451484, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAE83fL+jSrI+YwqqPv4tzz4DkCM/Hdq2PnYwPr5ToWm+GP9AP472xz5HSkS/lGglPthhhj+5TME+qEUbP3NKvr0ocoC/tjzZPryNEj8gzfE9zH6GP98xqj2lF5u+z6hivPzO0z65qyA/bhDDPuFExD7rlVy/KPDSP170bL/Ez7A+nZDxvjyBlT7PkgC+YrlwvvBULz+FTsC+hMsqv0A33zvaYiI/B6cwv6e4CT8La7q98xEFvqy24r6hLw8/I9otvSK4Fr+SrQa/P/iYvi+5mr38ztM+uasgP24Qwz7hRMQ+Pa93v93VHj+w9kM+QtvevDVRG79qFBs+hYM5vh1Wcb6RktC/HC9uPcC9Q79uLli9u6EiPwydBr+Lvho/Z7RmPebggb9v582+oUESP7fK6zw4zqA/DripPT0wlL7PlWo+/M7TPrmrID9uEMM+4UTEPoOBfL+jIg0/t8ttPhQ2Ab3xOZa8WtpKPrQP1Tz7LZq+5mbNvxsdgDw5UCu/3UN6vQ6Lkj//sdw82QsbP7Ppdz1UolC/77HbOy0TMj9CzHQ9rpujP2G6QL2745m+BDCWvfzO0z65qyA/bhDDPuFExD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACsrpk1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADtK3vAAAAABO/PW/AAAAAGrhtr0AAAAAZ+oAQAAAAAA6oQM+AAAAAIdD/D8AAAAAobzoOwAAAAA+uP6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhuSbtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJUS8L0AAAAA9EbxvwAAAADiruw8AAAAALBo6j8AAAAAUN3CvQAAAADrNf0/AAAAAAIwgj0AAAAAkojsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALDceTQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICJeYq9AAAAAOfo+78AAAAAuPCLvQAAAAANdd4/AAAAAGf0e70AAAAAm8/3PwAAAAA6h5K9AAAAAP4U+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7Wou1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAVcoHvAAAAACBitu/AAAAAEvysb0AAAAAXQX4PwAAAADa2IA8AAAAAHV+2z8AAAAAqq9lvAAAAABUzvu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC7nbh3qzKMAWyUTegDjAF0lEdAq+cvdVNpNHV9lChoBkdAc+tGxlg+hWgHTegDaAhHQKvsJvddmg91fZQoaAZHQHEgCo86mwdoB03oA2gIR0Cr7diiAUcodX2UKGgGR0CFNs64Ds+naAdN6ANoCEdAq+9kXHim23V9lChoBkdAgtMa3iJfpmgHTegDaAhHQKvzhHOKO1h1fZQoaAZHQHLM/GACnxdoB03oA2gIR0Cr+KWLYPGydX2UKGgGR0B+rviOvMbFaAdN6ANoCEdAq/p16/qPfnV9lChoBkdAewONwiqyW2gHTegDaAhHQKv8AMy8BdV1fZQoaAZHQG4G5avA44poB03oA2gIR0CsACsdDIBBdX2UKGgGR0B6mA7DEWIoaAdN6ANoCEdArAUbtiQT23V9lChoBkdAedQGj9GZu2gHTcoDaAhHQKwGfQxesxR1fZQoaAZHQHeLvNZ/0/ZoB03oA2gIR0CsCGT+m3vydX2UKGgGR0B9t8tL+PzWaAdN6ANoCEdArAxVkOI683V9lChoBkdAdtZE6T4cm2gHTegDaAhHQKwRRiGWUr11fZQoaAZHQHiYfjS5RTFoB03oA2gIR0CsEqNpmEoOdX2UKGgGR0B7fOHbh3qzaAdN6ANoCEdArBSIymALA3V9lChoBkdAghDVf3N9pmgHTegDaAhHQKwYfyIYWLx1fZQoaAZHQIe+JJNCZ4RoB03oA2gIR0CsHWu1WsBAdX2UKGgGR0CELs/gzguRaAdN6ANoCEdArB7PcnE2pHV9lChoBkdAfnGnEl3QlmgHTegDaAhHQKwgsKMvRJF1fZQoaAZHQIXJEh/y5I9oB03oA2gIR0CsJLnhCMP0dX2UKGgGR0B4nC9zwMH9aAdN6ANoCEdArCm8Y2sJY3V9lChoBkdAeKarRBu4w2gHTegDaAhHQKwrJOKwY+B1fZQoaAZHQHSZoiLVFx5oB03oA2gIR0CsLQrzXjEOdX2UKGgGR0Bscsl9jPOZaAdN6ANoCEdArDEM6FM7EHV9lChoBkdAgjy8HGCI12gHTegDaAhHQKw2EVtXPqt1fZQoaAZHQGAwGfGuLaVoB036AWgIR0CsN1CcXm/4dX2UKGgGR0CB23SlWOp9aAdN6ANoCEdArDdzpHI6sHV9lChoBkdAeDh5Lh73PGgHTegDaAhHQKw5X9aUzKt1fZQoaAZHQHhjjuWrwORoB03oA2gIR0CsQlqLCN0edX2UKGgGR0B9V4FMZgogaAdN6ANoCEdArEOVuvUz9HV9lChoBkdAhGzV32VVxWgHTegDaAhHQKxDuI+GGmF1fZQoaAZHQH+pw6ZH/cZoB03oA2gIR0CsRZ9eyAx0dX2UKGgGR0CChNfReC04aAdN6ANoCEdArE6gsZpBX3V9lChoBkdAfWG76Hj6vmgHTegDaAhHQKxP3P0qYqp1fZQoaAZHQIFRPa+N96VoB03oA2gIR0CsT/74zrNXdX2UKGgGR0CBucrCm/FjaAdN6ANoCEdArFHWHgxagXV9lChoBkdAXByij+Jgs2gHTQcBaAhHQKxVApKjBVN1fZQoaAZHQGcAtWuHN5doB03KAWgIR0CsVYXOObRXdX2UKGgGR0B/sGvQnhKlaAdN6ANoCEdArFrREMLF43V9lChoBkdAfuboWHk92WgHTegDaAhHQKxcDipeeFt1fZQoaAZHQIFW64H5aeRoB03oA2gIR0CsYWEBjnV5dX2UKGgGR0B3h1D9fkWAaAdN6ANoCEdArGHauQp4KXV9lChoBkdAgICOqebut2gHTegDaAhHQKxnFYSQHRl1fZQoaAZHQID7Z8OTaCdoB03oA2gIR0CsaFGcvugIdX2UKGgGR0B0FSDUVi4KaAdNxwJoCEdArGqd7IDHO3V9lChoBkdAgRRzmwJPZmgHTegDaAhHQKxtmTxoZht1fZQoaAZHQHls7j5sTFloB03oA2gIR0Csc41Aqur7dX2UKGgGR0ByX5VIZqEfaAdN6ANoCEdArHTmCf6Gg3V9lChoBkdAeZZOQyRB/2gHTegDaAhHQKx3MKpDNQl1fZQoaAZHQHte2JBPbfxoB03oA2gIR0Csejrk0aZQdX2UKGgGR0Bf1JHRTjvNaAdNcgFoCEdArHuzbg0j1XV9lChoBkdAc1eY8Md92GgHTegDaAhHQKyABxn3+Mt1fZQoaAZHQIJn92s7uD1oB03oA2gIR0CsgUUYj0L/dX2UKGgGR0Bwh9vWH1vmaAdN6ANoCEdArIaMz67/XHV9lChoBkdAebbB2wFC9mgHTegDaAhHQKyICx5cC5p1fZQoaAZHQHJtVnZkCmxoB03oA2gIR0CsjGNpVS4wdX2UKGgGR0B5ax7/n4fwaAdN6ANoCEdArI2bn1WbPXV9lChoBkdAgWJkVN5+pmgHTegDaAhHQKyS2y0rsjV1fZQoaAZHQH9d40hvBJtoB03oA2gIR0CslFI1DSgHdX2UKGgGR0BxFtAeJYT1aAdN6ANoCEdArJixKODJ2nV9lChoBkdAb8kJhvze42gHTegDaAhHQKyZ79uxbB51fZQoaAZHQG9D4AbQ1JloB03oA2gIR0Csnyhx5s0pdX2UKGgGR0B6aXmuDBdlaAdN6ANoCEdArKCs23rleXV9lChoBkdAgnyrmhdt22gHTegDaAhHQKyk7Eehf0F1fZQoaAZHQHmSBy0a6z5oB03oA2gIR0CspjEJSiuddX2UKGgGR0Bxo7KlpGnXaAdN6ANoCEdArKuSZ8a4t3V9lChoBkdAeNZbo8p1BGgHTegDaAhHQKytDQQcxTN1fZQoaAZHQHPpmhZha1VoB03oA2gIR0CssXXevZAZdX2UKGgGR0CBNg/D+BH1aAdN6ANoCEdArLK2thd+onV9lChoBkdAe2P74zrNW2gHTegDaAhHQKy39KAavRt1fZQoaAZHQH4OKT0QK8doB03oA2gIR0CsuXcQ7LdOdX2UKGgGR0CBjlWVeKKpaAdN6ANoCEdArL3D4Ju2qnV9lChoBkdAcvEnQpnYhGgHTegDaAhHQKy/C++ueSV1fZQoaAZHQIKNG0/nnuBoB03oA2gIR0CsxDfoaDPGdX2UKGgGR0B1e6W9lEqlaAdN6ANoCEdArMWweT3Zf3V9lChoBkdAgfVSZa3ZwmgHTegDaAhHQKzJ7rY5DJF1fZQoaAZHQH9UPE87p3ZoB03oA2gIR0CsyzKWLP2PdX2UKGgGR0CDlxJ/XoTxaAdN6ANoCEdArNBnqVyFPHV9lChoBkdAgQnDJU5uImgHTegDaAhHQKzR5Rb8m8d1fZQoaAZHQIGk5ib2Dg9oB03oA2gIR0Cs1iaMBIWhdX2UKGgGR0CBpsVxjriVaAdN6ANoCEdArNdpxgiNbXV9lChoBkdAge/L/bTMJWgHTegDaAhHQKzcoQr+YMR1fZQoaAZHQIFwxDCxeLNoB03oA2gIR0Cs3hsJIDoydX2UKGgGR0CCP9T3qRlpaAdN6ANoCEdArOJmdkJ8fHV9lChoBkdAgRx15KODJ2gHTegDaAhHQKzjrz/ZM+N1fZQoaAZHQIDY1u1ndwhoB03oA2gIR0Cs6Np48loldX2UKGgGR0CDtonm7rcCaAdN6ANoCEdArOpYO8TSLXV9lChoBkdAgHRR/EwWWWgHTegDaAhHQKzuvYuCf6J1fZQoaAZHQIGMApMHryFoB03oA2gIR0Cs7/U8/2TQdX2UKGgGR0CAYU1a4c3maAdN6ANoCEdArPU1onKGL3V9lChoBkdAdHGY/3WWhWgHTegDaAhHQKz2tvqC6H11fZQoaAZHQIFvST+vQnhoB03oA2gIR0Cs+vc3VCokdX2UKGgGR0B+YrI+4b0faAdN6ANoCEdArPwu9YfW+XV9lChoBkdAgiZddmg8KWgHTegDaAhHQK0BYYb83uN1fZQoaAZHQICxijesPrhoB03oA2gIR0CtAuCZfD1odX2UKGgGR0CBl3oq0+khaAdN6ANoCEdArQcbILgGbHV9lChoBkdAgZlGrbQC0WgHTegDaAhHQK0IYQUYbbV1fZQoaAZHQHUyBas6q81oB03oA2gIR0CtDZwOWjXWdX2UKGgGR0B+j/Zi/fwaaAdN6ANoCEdArQ8iLZSNwXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62661, "n_steps": 8, "gamma": 0.98, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f462f880700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f462f880790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f462f880820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f462f8808b0>", "_build": "<function ActorCriticPolicy._build at 0x7f462f880940>", "forward": "<function ActorCriticPolicy.forward at 0x7f462f8809d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f462f880a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f462f880af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f462f880b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f462f880c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f462f880ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f462f880d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f462f87e4e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674406744907049052, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAANTvT9FW4q/jQrdPRpFaD9Je3i/e2Lcvi+D6L98ngy/w28eP6u6xLwE+Hi/O/J/OhOQnr6I6II/u641PyB607/8PNK/A96OP45grL+rtYa/gBEbvzNMUr7Giz4/NU+xP7Xefr/A1ww/DlrUvwqQeb+U+5A+7K5Vv4xgkj4IR8k+5FUfP+Ptrz+Gi2K9VjmCv4nnHT8Zw+C81AmCvuRkfL7ZxTI/ZpNvP0hWUT+3k8g93TmHPwIMB0CJ2mg+P5EAvosmEz9Yor++1tPKP09yYz613n6/wNcMPw5a1L88TYM/mzK8vkjgH78hXso+4kPuPQ6lszxhPwA/1lhQv6EXqz7RJh4/ipB5vHKleL8EyNq7dH3WvjC1nT/p9QM/CtUoPgRGJT1afgpAIF47vjI1iT7aBR2/rEhpPrFwGT/kj14+td5+v8DXDD8OWtS/PE2DPwFJcD+ysJu/Eo13vIO74j7+0PO/uruCv8tZLL8tclc/ch0ePybINb1oxPA9VYe8vdKiqb95yXY9n2wSvyjzhz6uMQPAK/bXv8rY97+Q8fw+jwgnv/hrOb1fnHK/7sEXP0mRgD/A1ww/W08aPwqQeb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACQZXm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuj+JPQAAAABYm9u/AAAAAB6AlL0AAAAAi+HYPwAAAAAvlYA8AAAAAJGq4j8AAAAA5aMlPQAAAACFR9y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF9e3tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMsFOD0AAAAAb7PtvwAAAAAsHJW9AAAAAHZF9T8AAAAAkt2WPAAAAACZWd8/AAAAAC0JBz4AAAAAcZzzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJY9BrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICsGo09AAAAAIEd/b8AAAAAFEtKPQAAAABqaeQ/AAAAADTn7bwAAAAABbPqPwAAAACrph49AAAAAGkTAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABG10w2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHtMtvQAAAADYIdq/AAAAACXbBj0AAAAAS9nxPwAAAAAivTy9AAAAACtC7T8AAAAArnTVvQAAAAAcEfi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJSFI3FUADKMAWyUTegDjAF0lEdAp6v0stkFwHV9lChoBkdAmhlTviLl3mgHTegDaAhHQKetirsByS51fZQoaAZHQJp0wCbMHKRoB03oA2gIR0Cnrs2iDdxidX2UKGgGR0CZjNG8VYZEaAdN6ANoCEdAp68plSS/03V9lChoBkdAl+KE7Sy+pWgHTegDaAhHQKe4ab83uNR1fZQoaAZHQJ4EbXbuc+doB03oA2gIR0CnugLiMo+fdX2UKGgGR0CcKpPxhDw6aAdN6ANoCEdAp7tDDqGDc3V9lChoBkdAnEa+YlY2bWgHTegDaAhHQKe7mEQoTf11fZQoaAZHQJ5EzMcIZ65oB03oA2gIR0CnxN/4yoGZdX2UKGgGR0CfFwNZvDP4aAdN6ANoCEdAp8aEEaESNHV9lChoBkdAn5NUpI+W4WgHTegDaAhHQKfH1aKUFB91fZQoaAZHQJ9b28Yht+FoB03oA2gIR0CnyDLO7g89dX2UKGgGR0CcHBP9DQZ5aAdN6ANoCEdAp9F7NGEwnHV9lChoBkdAm5taMR6F/WgHTegDaAhHQKfTJ7laKUF1fZQoaAZHQJrczHktEohoB03oA2gIR0Cn1HHkkrwwdX2UKGgGR0CbOJ2xIJ7caAdN6ANoCEdAp9TJLqUu+XV9lChoBkdAoB979ZRsM2gHTegDaAhHQKfd9RKHwgF1fZQoaAZHQJ7HF6v7m+1oB03oA2gIR0Cn35Ar6LwXdX2UKGgGR0Cfd3RdQfp2aAdN6ANoCEdAp+Dfx4IKMXV9lChoBkdAn7vHgHeJpGgHTegDaAhHQKfhN0EHMU11fZQoaAZHQJz7ORbKRuFoB03oA2gIR0Cn6nSntOVPdX2UKGgGR0CctlLVnVXnaAdN6ANoCEdAp+weZPVNH3V9lChoBkdAntoFX/5tWWgHTegDaAhHQKftaIYWLxZ1fZQoaAZHQJ/JQJw84gloB03oA2gIR0Cn7cJHy3CsdX2UKGgGR0CdfhR+BpYcaAdN6ANoCEdAp/cDmOlwcnV9lChoBkdAoDcWXRgJC2gHTegDaAhHQKf4pbL2YfJ1fZQoaAZHQJ7bIUxmCiBoB03oA2gIR0Cn+eyfL9uQdX2UKGgGR0CegIzIFNcoaAdN6ANoCEdAp/pFYOlO5HV9lChoBkdAnmdCElE7XGgHTegDaAhHQKgDa3GXHBF1fZQoaAZHQKAPaQEIPbxoB03oA2gIR0CoBQeq7yxzdX2UKGgGR0CFVGXlbNbDaAdN6ANoCEdAqAZYFPi1iXV9lChoBkdAoEw65oXbd2gHTegDaAhHQKgGsJhvze51fZQoaAZHQKAF/UTcqONoB03oA2gIR0CoD9IdELH/dX2UKGgGR0CeE+Zv1lGxaAdN6ANoCEdAqBFz9qDbrXV9lChoBkdAnW8VOTJQtWgHTegDaAhHQKgSvrsSkCV1fZQoaAZHQJ+Vd5MURFtoB03oA2gIR0CoExQpWmxddX2UKGgGR0CgCj4+0PYnaAdN6ANoCEdAqBwjKNhmXnV9lChoBkdAn52yZWq95GgHTegDaAhHQKgdys8xKxt1fZQoaAZHQJV1kZCOWB1oB03oA2gIR0CoHwdCeEqUdX2UKGgGR0CbusJ2t+1CaAdN6ANoCEdAqB9ZoIv8InV9lChoBkdAoLnmpMpPRGgHTegDaAhHQKgoVNUwSJ11fZQoaAZHQJ/dDAVO9FpoB03oA2gIR0CoKep8v24/dX2UKGgGR0CgAcA+Y+jeaAdN6ANoCEdAqCss6BAfMnV9lChoBkdAmnKUwztTk2gHTegDaAhHQKgrhAtWdVh1fZQoaAZHQJ0ALATIvJ1oB03oA2gIR0CoNLJKraM8dX2UKGgGR0CaCsaG5+YuaAdN6ANoCEdAqDZEcp9ZzXV9lChoBkdAnvfKeGwiaGgHTegDaAhHQKg3iTCcf/51fZQoaAZHQJxpFirksBhoB03oA2gIR0CoN92UjcEedX2UKGgGR0CXiNL9uP3jaAdN6ANoCEdAqEEBd0JWvXV9lChoBkdAnnfsdT5wfmgHTegDaAhHQKhCmHoouwp1fZQoaAZHQJySMu01IiFoB03oA2gIR0CoQ+gjyFwldX2UKGgGR0CckozguRLcaAdN6ANoCEdAqEQ+KQ7tA3V9lChoBkdAnfhDH4oJA2gHTegDaAhHQKhNf8WKuSx1fZQoaAZHQJxZ/p3X7LtoB03oA2gIR0CoTyXFkxyodX2UKGgGR0CdohjqOcUeaAdN6ANoCEdAqFBrTx5LRXV9lChoBkdAnPnz5j6N2mgHTegDaAhHQKhQw2G7Bft1fZQoaAZHQJeZ2fChvitoB03oA2gIR0CoWhn8CPp7dX2UKGgGR0CcVyWcSXdCaAdN6ANoCEdAqFvB93KSxXV9lChoBkdAn2QbY9Pk72gHTegDaAhHQKhdFg4Otnx1fZQoaAZHQIviPoHLRrtoB03oA2gIR0CoXWxBmf5DdX2UKGgGR0Cevo8yeqaPaAdN6ANoCEdAqGav9gnc+XV9lChoBkdAnXzHKwIMSmgHTegDaAhHQKhoZK/20zF1fZQoaAZHQJ9kXu1F6RhoB03oA2gIR0CoacQeeWfLdX2UKGgGR0Ce4W+/QBxQaAdN6ANoCEdAqGofcJtzjnV9lChoBkdAoFTEH+qBE2gHTegDaAhHQKhzWeFtbcJ1fZQoaAZHQKBw5JZGKAJoB03oA2gIR0CodPy5iExqdX2UKGgGR0CgrqgWrOqvaAdN6ANoCEdAqHZVaB7NS3V9lChoBkdAoMtKU3XI2mgHTegDaAhHQKh2rrZ8KHB1fZQoaAZHQKAOdZYgaFVoB03oA2gIR0CogAcsMAmzdX2UKGgGR0CeYJMCcPOIaAdN6ANoCEdAqIGltsN2DHV9lChoBkdAmYFTTrmhd2gHTegDaAhHQKiC6L0Bfa91fZQoaAZHQJ5TDRRdhRZoB03oA2gIR0Cog0H+6y0KdX2UKGgGR0CcUUBZZB9kaAdN6ANoCEdAqIxIGdI5HXV9lChoBkdAoAo6be/HpGgHTegDaAhHQKiN3rKNhmZ1fZQoaAZHQJu3cEV32VVoB03oA2gIR0Cojxs98qnWdX2UKGgGR0Cc/6Oq//NraAdN6ANoCEdAqI9yrYGt63V9lChoBkdAnp9weeWfLGgHTegDaAhHQKiYq36yjYZ1fZQoaAZHQKBYM/0ulGhoB03oA2gIR0Comj5COWB0dX2UKGgGR0Cgd4lSsKb8aAdN6ANoCEdAqJt/uw5eaHV9lChoBkdAoLNaxeLNwGgHTegDaAhHQKib1C/oJRh1fZQoaAZHQJweGMfigkFoB03oA2gIR0CopPmTLW7OdX2UKGgGR0CgLovAwfyPaAdN6ANoCEdAqKaubb1yvXV9lChoBkdAnX3HenAIp2gHTegDaAhHQKin8eRPoFF1fZQoaAZHQJ/V2GSIP9VoB03oA2gIR0CoqEbUXpGGdX2UKGgGR0Cdl9axX4j9aAdN6ANoCEdAqLFgaBI4EXV9lChoBkdAnpAtkrf+CWgHTegDaAhHQKizADe0ojR1fZQoaAZHQJ4AYo3Jgb9oB03oA2gIR0CotESOR1YAdX2UKGgGR0Cg3ShxxT86aAdN6ANoCEdAqLSeYBvJinV9lChoBkdAne/XWWhRImgHTegDaAhHQKi9trC3w1B1fZQoaAZHQJ+YBdzGPxRoB03oA2gIR0Cov1et0V8DdX2UKGgGR0CgBWS00FbFaAdN6ANoCEdAqMCgp6QeWHV9lChoBkdAoE1jW5H3DmgHTegDaAhHQKjA+58Sf191fZQoaAZHQJ6oVTdcjaBoB03oA2gIR0Coynmm+CbudX2UKGgGR0Caa8kgOjIraAdN6ANoCEdAqMwalYU343V9lChoBkdAm7HkXk5p8GgHTegDaAhHQKjNadOqNqB1fZQoaAZHQJ1L/Aaef7JoB03oA2gIR0CozcCl7+kydX2UKGgGR0CZLhcXFcY7aAdN6ANoCEdAqNbtBQemvXV9lChoBkdAm1mEGmk30mgHTegDaAhHQKjYklzltCR1fZQoaAZHQJWZiM5wOvtoB03oA2gIR0Co2dwT/Q0GdX2UKGgGR0CZWm3j+717aAdN6ANoCEdAqNozDdgv13VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1825.8811837160029, "std_reward": 114.01479694958701, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T18:03:11.169845"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2136
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d048ebcddf0ec1f7999cce882c261e9dd2e2d24a3df85d2d5bb3e71783864129
|
3 |
size 2136
|