Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1127.86 +/- 338.12
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6aa3499764d2abce63cfa3c341154695d9f312d24f4867c10fe64cde8c2c5bf3
|
3 |
+
size 129006
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f173adeb670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f173adeb700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f173adeb790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f173adeb820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f173adeb8b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f173adeb940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f173adeb9d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f173adeba60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f173adebaf0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f173adebb80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f173adebc10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f173adebca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f173adeac40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 3000000,
|
63 |
+
"_total_timesteps": 3000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1680119707504926027,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJ5AJL/KSbi/PcdGv4HL5j4SjYc/AzAkv8KcwT7Dx7U/CCZWP2+nmLzNSYK/QeFCwHyu5r0yr08/IpJuvxKIzD41QYW9iLnjP19mlL6wbOK//mQjv9fYvj6H0S6/NKkBP/Qwkb/H+Ns+ZAgIP28Ohz8nakm/AcPpvsiYwsBU8K2/vknrPukjTD7TdBG+Oxw4wKpnRT8b1bI+Z7XFP0d7Ar1y7ae/w0wQvRDnSj/IMAQ/G8aOP9GbyL3mLyY/ZWJ0PYk5Lr8DwDg9FHZ0v0cMUz9GsGE/x/jbPmQICD/mn3K/tvqJv/kaT760BfU+FrEiPzno3z+sn/G+YYzBvGH2bz8obD8/kT+2v3fLpL+IGqw+f4A0PxVdyT4ruuQ87iR7P+K7uT/7TUS7X90Svrbxgr51/qG+toy/vyaD+b5PB84+9DCRv8f42z5kCAg/bw6HP2xTNL8SkoS/xIaywNDot7+MHxk/i7+yPWwnoL3FOgvAlirrPr7LmT4hmZk/zMrEuy/Jp78+nZ47O/gbPyLyPrx3e0U/DakePHAAYz/UgoA9aCYvv2TAab50VvS+0uSTP0awYT/H+Ns+ZAgIP+afcr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACTpsM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2sIOPgAAAAC2HADAAAAAAE6LGD0AAAAAZ+PtPwAAAABEaQg+AAAAALpf5j8AAAAAPIT1vAAAAABORuK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6I6TNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgETNPzsAAAAAF23fvwAAAAC5CrM9AAAAAOMG3z8AAAAAaidhvAAAAACZE/s/AAAAAMqPej0AAAAAQuDovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFR8RzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBstDQ9AAAAAMeF378AAAAAvTrMPQAAAADcBeU/AAAAACPx+bwAAAAAunbkPwAAAADxDtK9AAAAANaO+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcv4Y0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcFEXPQAAAADi0eq/AAAAAExkxjwAAAAAs/bvPwAAAAColPo9AAAAAEEQ9T8AAAAARLK5PQAAAABxXOO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFjRfEXLvCyMAWyUTTQBjAF0lEdAte3qHP/rB3V9lChoBkdAlawje40/GGgHTegDaAhHQLXvdfmLcbl1fZQoaAZHQJIecL9deIFoB03oA2gIR0C177x3JPqLdX2UKGgGR0CGRILFXJYDaAdN6ANoCEdAtfWaojv/i3V9lChoBkdAkjQqNAC4jWgHTegDaAhHQLX3UQl8gIR1fZQoaAZHQIHs2Zw4sEtoB03oA2gIR0C1+YBnBciXdX2UKGgGR0CIMbAiV0LdaAdN6ANoCEdAtfnE+gUUPHV9lChoBkdAe7ZxRl6JImgHTfABaAhHQLX7QzguRLd1fZQoaAZHQFcByFwkxAVoB03oA2gIR0C1/Yor4FibdX2UKGgGR0CKmFs41gpjaAdNbwNoCEdAtf9gGt6ol3V9lChoBkdAkumua4MF2WgHTegDaAhHQLYA5iO/+Kl1fZQoaAZHQIhUbXSSeRRoB03oA2gIR0C2A06wdKdydX2UKGgGR0CPsYCaqjrSaAdN6ANoCEdAtgXbRRdhRnV9lChoBkdAjeF2HUMG5mgHTegDaAhHQLYHsWsA/9p1fZQoaAZHQI/BCZ2IO6NoB03oA2gIR0C2CMtD2JzldX2UKGgGR0CXSEpaA4GVaAdN6ANoCEdAtgpQulGgBnV9lChoBkdAl7gQQUYbbWgHTegDaAhHQLYMghttQ9B1fZQoaAZHQJekN7fHggpoB03oA2gIR0C2Dn3CTEBKdX2UKGgGR0CYReHVf/m1aAdN6ANoCEdAthAcB8x9HHV9lChoBkdAk8Ur8iwB52gHTegDaAhHQLYScN83Mpx1fZQoaAZHQIJYNpTMqz9oB01kAmgIR0C2FBkBsANodX2UKGgGR0CSmO7iADq4aAdN6ANoCEdAthTRUEPlMnV9lChoBkdAbyA+nIhhY2gHS/toCEdAthZ4OhCdBnV9lChoBkdAjq9gc94eLmgHTegDaAhHQLYXvkupS751fZQoaAZHQIQ/pbKRuCRoB03oA2gIR0C2GT55qubJdX2UKGgGR0CVWkKuSwGGaAdNWANoCEdAthnGGetjkXV9lChoBkdAk8e/a+N96WgHTegDaAhHQLYdHPO6d2B1fZQoaAZHQJU7UVGkN4JoB03oA2gIR0C2HuZTIeYEdX2UKGgGR0CVVi9XtBv8aAdN6ANoCEdAtiE0oG6f8XV9lChoBkdAlfs5n+Q2dmgHTegDaAhHQLYh4d2gWad1fZQoaAZHQIeUspCrtE5oB01MAmgIR0C2IoB/ViF1dX2UKGgGR0CDvCBVdX1baAdN6ANoCEdAtiZ/K0UoKHV9lChoBkdAmrSUgntv42gHTegDaAhHQLYn9q8UVSJ1fZQoaAZHQJBgLrPdEb5oB03oA2gIR0C2KH4uPFNtdX2UKGgGR0CXr5DqW1MNaAdN6ANoCEdAtikeX5WRzXV9lChoBkdAkpY6X0Gu92gHTegDaAhHQLYtyy0a6z51fZQoaAZHQJQfdWgezUtoB03oA2gIR0C2MD/8/D+BdX2UKGgGR0CDjSH8CPp7aAdN6ANoCEdAtjDZWS2Yv3V9lChoBkdAlmjNz8xbjmgHTegDaAhHQLYxdn5SFXd1fZQoaAZHQJBvAYR/ViFoB03oA2gIR0C2NZE7fYSQdX2UKGgGR0CTENF49ovjaAdN6ANoCEdAtjcXUUfxMHV9lChoBkdAhiDbL+xW1mgHTegDaAhHQLY3oB7u2JB1fZQoaAZHQIRwWDL8rI5oB03oA2gIR0C2OEi0OVgQdX2UKGgGR0CJm7MTN+spaAdN6ANoCEdAtj03GDL8rXV9lChoBkdAldIccdYGMWgHTegDaAhHQLY/aZBsyi51fZQoaAZHQI9jFLpRoAZoB03oA2gIR0C2P+95IH1OdX2UKGgGR0CSXQV3EAHWaAdN6ANoCEdAtkCMPczqKXV9lChoBkdAggQrULDyfGgHTegDaAhHQLZEf1Z1V5t1fZQoaAZHQJIPLel9BrxoB03oA2gIR0C2RfpYLb5/dX2UKGgGR0CYFZA31jAjaAdN6ANoCEdAtkZ+MOwxFnV9lChoBkdAlxPFAmiQDGgHTegDaAhHQLZHF67ulXR1fZQoaAZHQJaWCIBRyfdoB03oA2gIR0C2TBL433pOdX2UKGgGR0CTHmT3qRlpaAdN6ANoCEdAtk48Gu9vj3V9lChoBkdAke6N83Mpw2gHTegDaAhHQLZOxgmJFb51fZQoaAZHQJa1PmfXf65oB03oA2gIR0C2T2VktmL+dX2UKGgGR0CS9vU1AJLNaAdN6ANoCEdAtlNt+y7f53V9lChoBkdAln42WY4Qz2gHTegDaAhHQLZU60lZ5iV1fZQoaAZHQJe09J/XoTxoB03oA2gIR0C2VW9q+JxedX2UKGgGR0CRLzDfm9xqaAdN6ANoCEdAtlYOsvIwNHV9lChoBkdAlY70g8r7O2gHTegDaAhHQLZbFdt2s7x1fZQoaAZHQJDgrJ7sv7FoB03oA2gIR0C2XRyauwHJdX2UKGgGR0CUcATRYzSDaAdN6ANoCEdAtl2jeKsMiXV9lChoBkdAikxi/O+qR2gHTegDaAhHQLZeQ/uLJjl1fZQoaAZHQJjkutHQQcxoB03oA2gIR0C2YjmrCFbndX2UKGgGR0CbcrmCAc1gaAdN6ANoCEdAtmO6luWKM3V9lChoBkdAmHPcAR02cmgHTegDaAhHQLZkQtb9qDd1fZQoaAZHQJnMIg2ZRbdoB03oA2gIR0C2ZODTKDChdX2UKGgGR0CZTyRoysS1aAdN6ANoCEdAtmoPncL0BnV9lChoBkdAmO4UAxSHd2gHTegDaAhHQLZsBXfqHGl1fZQoaAZHQJAhgU0vXbxoB03oA2gIR0C2bJiU1Q67dX2UKGgGR0COzixUvPC3aAdN6ANoCEdAtm08mrsByXV9lChoBkdAlHBFzEJjUmgHTegDaAhHQLZxZgqVhTh1fZQoaAZHQJObEK4QSSNoB03oA2gIR0C2cug5Jbt7dX2UKGgGR0CTzcH7xd6caAdN6ANoCEdAtnNzupjtonV9lChoBkdAmiRM5sCT2WgHTegDaAhHQLZ0FuaWom51fZQoaAZHQIDgoGyHEdhoB03oA2gIR0C2eY4lIEr5dX2UKGgGR0CXYl+nZTQ3aAdN6ANoCEdAtns+KVII4XV9lChoBkdAlyjtA9mpVGgHTegDaAhHQLZ7yTWGyop1fZQoaAZHQJqgV7PY4AFoB03oA2gIR0C2fGRHLA58dX2UKGgGR0CV5mi6QNkOaAdN6ANoCEdAtoBy3OObRXV9lChoBkdAm0qjposZpGgHTegDaAhHQLaB/o1UEPl1fZQoaAZHQJi/ZbfP5YZoB03oA2gIR0C2goMHB1s+dX2UKGgGR0CRIM1WbPQfaAdN6ANoCEdAtoMhIxxku3V9lChoBkdAmZDTynUDuGgHTegDaAhHQLaIy1Q66rh1fZQoaAZHQJTqdQwblzVoB03oA2gIR0C2ik9DlYEGdX2UKGgGR0CFhtu7YkE+aAdN6ANoCEdAtoreOmzjWHV9lChoBkdAmxZAeV9nb2gHTegDaAhHQLaLfaCcwxp1fZQoaAZHQJe7xFc6eXloB03oA2gIR0C2j4IhdMTOdX2UKGgGR0CILTz0Yj0MaAdN6ANoCEdAtpD/c2zfJnV9lChoBkdAlU5mfoRqXWgHTegDaAhHQLaRhzzVc2R1fZQoaAZHQJcnyB7NSqFoB03oA2gIR0C2kiwpWmxddX2UKGgGR0CL0CZWq95AaAdN6ANoCEdAtpfK5J9RaXV9lChoBkdAlabu6mO2iWgHTegDaAhHQLaZTaya/h51fZQoaAZHQJT8prZamoBoB03oA2gIR0C2mdesHSncdX2UKGgGR0CMTMavzOHGaAdN6ANoCEdAtpp0ZIg/1XV9lChoBkdAlO5iAMDwIGgHTegDaAhHQLaeaDSPU8V1fZQoaAZHQJM6egAZKnNoB03oA2gIR0C2n+SZWq95dX2UKGgGR0CWH+E0BOpLaAdN6ANoCEdAtqBnsE7nxXV9lChoBkdAmgu7lmvnsGgHTegDaAhHQLahA68xsVN1fZQoaAZHQJAoQ5dWyTpoB03oA2gIR0C2pq0bHZK4dWUu"
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 93750,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e286644391fa4650982727667589ac160ceab5a75cf2a185e0e889b466f922bd
|
3 |
+
size 56062
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e801a2e51bea87018e0de292427b4a1770f1d64da57983e17ab9ff79d89a19a
|
3 |
+
size 56830
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f173adeb670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f173adeb700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f173adeb790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f173adeb820>", "_build": "<function ActorCriticPolicy._build at 0x7f173adeb8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f173adeb940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f173adeb9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f173adeba60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f173adebaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f173adebb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f173adebc10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f173adebca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f173adeac40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680119707504926027, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJ5AJL/KSbi/PcdGv4HL5j4SjYc/AzAkv8KcwT7Dx7U/CCZWP2+nmLzNSYK/QeFCwHyu5r0yr08/IpJuvxKIzD41QYW9iLnjP19mlL6wbOK//mQjv9fYvj6H0S6/NKkBP/Qwkb/H+Ns+ZAgIP28Ohz8nakm/AcPpvsiYwsBU8K2/vknrPukjTD7TdBG+Oxw4wKpnRT8b1bI+Z7XFP0d7Ar1y7ae/w0wQvRDnSj/IMAQ/G8aOP9GbyL3mLyY/ZWJ0PYk5Lr8DwDg9FHZ0v0cMUz9GsGE/x/jbPmQICD/mn3K/tvqJv/kaT760BfU+FrEiPzno3z+sn/G+YYzBvGH2bz8obD8/kT+2v3fLpL+IGqw+f4A0PxVdyT4ruuQ87iR7P+K7uT/7TUS7X90Svrbxgr51/qG+toy/vyaD+b5PB84+9DCRv8f42z5kCAg/bw6HP2xTNL8SkoS/xIaywNDot7+MHxk/i7+yPWwnoL3FOgvAlirrPr7LmT4hmZk/zMrEuy/Jp78+nZ47O/gbPyLyPrx3e0U/DakePHAAYz/UgoA9aCYvv2TAab50VvS+0uSTP0awYT/H+Ns+ZAgIP+afcr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACTpsM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2sIOPgAAAAC2HADAAAAAAE6LGD0AAAAAZ+PtPwAAAABEaQg+AAAAALpf5j8AAAAAPIT1vAAAAABORuK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6I6TNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgETNPzsAAAAAF23fvwAAAAC5CrM9AAAAAOMG3z8AAAAAaidhvAAAAACZE/s/AAAAAMqPej0AAAAAQuDovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFR8RzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBstDQ9AAAAAMeF378AAAAAvTrMPQAAAADcBeU/AAAAACPx+bwAAAAAunbkPwAAAADxDtK9AAAAANaO+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcv4Y0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcFEXPQAAAADi0eq/AAAAAExkxjwAAAAAs/bvPwAAAAColPo9AAAAAEEQ9T8AAAAARLK5PQAAAABxXOO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFjRfEXLvCyMAWyUTTQBjAF0lEdAte3qHP/rB3V9lChoBkdAlawje40/GGgHTegDaAhHQLXvdfmLcbl1fZQoaAZHQJIecL9deIFoB03oA2gIR0C177x3JPqLdX2UKGgGR0CGRILFXJYDaAdN6ANoCEdAtfWaojv/i3V9lChoBkdAkjQqNAC4jWgHTegDaAhHQLX3UQl8gIR1fZQoaAZHQIHs2Zw4sEtoB03oA2gIR0C1+YBnBciXdX2UKGgGR0CIMbAiV0LdaAdN6ANoCEdAtfnE+gUUPHV9lChoBkdAe7ZxRl6JImgHTfABaAhHQLX7QzguRLd1fZQoaAZHQFcByFwkxAVoB03oA2gIR0C1/Yor4FibdX2UKGgGR0CKmFs41gpjaAdNbwNoCEdAtf9gGt6ol3V9lChoBkdAkumua4MF2WgHTegDaAhHQLYA5iO/+Kl1fZQoaAZHQIhUbXSSeRRoB03oA2gIR0C2A06wdKdydX2UKGgGR0CPsYCaqjrSaAdN6ANoCEdAtgXbRRdhRnV9lChoBkdAjeF2HUMG5mgHTegDaAhHQLYHsWsA/9p1fZQoaAZHQI/BCZ2IO6NoB03oA2gIR0C2CMtD2JzldX2UKGgGR0CXSEpaA4GVaAdN6ANoCEdAtgpQulGgBnV9lChoBkdAl7gQQUYbbWgHTegDaAhHQLYMghttQ9B1fZQoaAZHQJekN7fHggpoB03oA2gIR0C2Dn3CTEBKdX2UKGgGR0CYReHVf/m1aAdN6ANoCEdAthAcB8x9HHV9lChoBkdAk8Ur8iwB52gHTegDaAhHQLYScN83Mpx1fZQoaAZHQIJYNpTMqz9oB01kAmgIR0C2FBkBsANodX2UKGgGR0CSmO7iADq4aAdN6ANoCEdAthTRUEPlMnV9lChoBkdAbyA+nIhhY2gHS/toCEdAthZ4OhCdBnV9lChoBkdAjq9gc94eLmgHTegDaAhHQLYXvkupS751fZQoaAZHQIQ/pbKRuCRoB03oA2gIR0C2GT55qubJdX2UKGgGR0CVWkKuSwGGaAdNWANoCEdAthnGGetjkXV9lChoBkdAk8e/a+N96WgHTegDaAhHQLYdHPO6d2B1fZQoaAZHQJU7UVGkN4JoB03oA2gIR0C2HuZTIeYEdX2UKGgGR0CVVi9XtBv8aAdN6ANoCEdAtiE0oG6f8XV9lChoBkdAlfs5n+Q2dmgHTegDaAhHQLYh4d2gWad1fZQoaAZHQIeUspCrtE5oB01MAmgIR0C2IoB/ViF1dX2UKGgGR0CDvCBVdX1baAdN6ANoCEdAtiZ/K0UoKHV9lChoBkdAmrSUgntv42gHTegDaAhHQLYn9q8UVSJ1fZQoaAZHQJBgLrPdEb5oB03oA2gIR0C2KH4uPFNtdX2UKGgGR0CXr5DqW1MNaAdN6ANoCEdAtikeX5WRzXV9lChoBkdAkpY6X0Gu92gHTegDaAhHQLYtyy0a6z51fZQoaAZHQJQfdWgezUtoB03oA2gIR0C2MD/8/D+BdX2UKGgGR0CDjSH8CPp7aAdN6ANoCEdAtjDZWS2Yv3V9lChoBkdAlmjNz8xbjmgHTegDaAhHQLYxdn5SFXd1fZQoaAZHQJBvAYR/ViFoB03oA2gIR0C2NZE7fYSQdX2UKGgGR0CTENF49ovjaAdN6ANoCEdAtjcXUUfxMHV9lChoBkdAhiDbL+xW1mgHTegDaAhHQLY3oB7u2JB1fZQoaAZHQIRwWDL8rI5oB03oA2gIR0C2OEi0OVgQdX2UKGgGR0CJm7MTN+spaAdN6ANoCEdAtj03GDL8rXV9lChoBkdAldIccdYGMWgHTegDaAhHQLY/aZBsyi51fZQoaAZHQI9jFLpRoAZoB03oA2gIR0C2P+95IH1OdX2UKGgGR0CSXQV3EAHWaAdN6ANoCEdAtkCMPczqKXV9lChoBkdAggQrULDyfGgHTegDaAhHQLZEf1Z1V5t1fZQoaAZHQJIPLel9BrxoB03oA2gIR0C2RfpYLb5/dX2UKGgGR0CYFZA31jAjaAdN6ANoCEdAtkZ+MOwxFnV9lChoBkdAlxPFAmiQDGgHTegDaAhHQLZHF67ulXR1fZQoaAZHQJaWCIBRyfdoB03oA2gIR0C2TBL433pOdX2UKGgGR0CTHmT3qRlpaAdN6ANoCEdAtk48Gu9vj3V9lChoBkdAke6N83Mpw2gHTegDaAhHQLZOxgmJFb51fZQoaAZHQJa1PmfXf65oB03oA2gIR0C2T2VktmL+dX2UKGgGR0CS9vU1AJLNaAdN6ANoCEdAtlNt+y7f53V9lChoBkdAln42WY4Qz2gHTegDaAhHQLZU60lZ5iV1fZQoaAZHQJe09J/XoTxoB03oA2gIR0C2VW9q+JxedX2UKGgGR0CRLzDfm9xqaAdN6ANoCEdAtlYOsvIwNHV9lChoBkdAlY70g8r7O2gHTegDaAhHQLZbFdt2s7x1fZQoaAZHQJDgrJ7sv7FoB03oA2gIR0C2XRyauwHJdX2UKGgGR0CUcATRYzSDaAdN6ANoCEdAtl2jeKsMiXV9lChoBkdAikxi/O+qR2gHTegDaAhHQLZeQ/uLJjl1fZQoaAZHQJjkutHQQcxoB03oA2gIR0C2YjmrCFbndX2UKGgGR0CbcrmCAc1gaAdN6ANoCEdAtmO6luWKM3V9lChoBkdAmHPcAR02cmgHTegDaAhHQLZkQtb9qDd1fZQoaAZHQJnMIg2ZRbdoB03oA2gIR0C2ZODTKDChdX2UKGgGR0CZTyRoysS1aAdN6ANoCEdAtmoPncL0BnV9lChoBkdAmO4UAxSHd2gHTegDaAhHQLZsBXfqHGl1fZQoaAZHQJAhgU0vXbxoB03oA2gIR0C2bJiU1Q67dX2UKGgGR0COzixUvPC3aAdN6ANoCEdAtm08mrsByXV9lChoBkdAlHBFzEJjUmgHTegDaAhHQLZxZgqVhTh1fZQoaAZHQJObEK4QSSNoB03oA2gIR0C2cug5Jbt7dX2UKGgGR0CTzcH7xd6caAdN6ANoCEdAtnNzupjtonV9lChoBkdAmiRM5sCT2WgHTegDaAhHQLZ0FuaWom51fZQoaAZHQIDgoGyHEdhoB03oA2gIR0C2eY4lIEr5dX2UKGgGR0CXYl+nZTQ3aAdN6ANoCEdAtns+KVII4XV9lChoBkdAlyjtA9mpVGgHTegDaAhHQLZ7yTWGyop1fZQoaAZHQJqgV7PY4AFoB03oA2gIR0C2fGRHLA58dX2UKGgGR0CV5mi6QNkOaAdN6ANoCEdAtoBy3OObRXV9lChoBkdAm0qjposZpGgHTegDaAhHQLaB/o1UEPl1fZQoaAZHQJi/ZbfP5YZoB03oA2gIR0C2goMHB1s+dX2UKGgGR0CRIM1WbPQfaAdN6ANoCEdAtoMhIxxku3V9lChoBkdAmZDTynUDuGgHTegDaAhHQLaIy1Q66rh1fZQoaAZHQJTqdQwblzVoB03oA2gIR0C2ik9DlYEGdX2UKGgGR0CFhtu7YkE+aAdN6ANoCEdAtoreOmzjWHV9lChoBkdAmxZAeV9nb2gHTegDaAhHQLaLfaCcwxp1fZQoaAZHQJe7xFc6eXloB03oA2gIR0C2j4IhdMTOdX2UKGgGR0CILTz0Yj0MaAdN6ANoCEdAtpD/c2zfJnV9lChoBkdAlU5mfoRqXWgHTegDaAhHQLaRhzzVc2R1fZQoaAZHQJcnyB7NSqFoB03oA2gIR0C2kiwpWmxddX2UKGgGR0CL0CZWq95AaAdN6ANoCEdAtpfK5J9RaXV9lChoBkdAlabu6mO2iWgHTegDaAhHQLaZTaya/h51fZQoaAZHQJT8prZamoBoB03oA2gIR0C2mdesHSncdX2UKGgGR0CMTMavzOHGaAdN6ANoCEdAtpp0ZIg/1XV9lChoBkdAlO5iAMDwIGgHTegDaAhHQLaeaDSPU8V1fZQoaAZHQJM6egAZKnNoB03oA2gIR0C2n+SZWq95dX2UKGgGR0CWH+E0BOpLaAdN6ANoCEdAtqBnsE7nxXV9lChoBkdAmgu7lmvnsGgHTegDaAhHQLahA68xsVN1fZQoaAZHQJAoQ5dWyTpoB03oA2gIR0C2pq0bHZK4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 93750, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (965 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1127.8593117635696, "std_reward": 338.1211973416329, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-30T09:33:41.093586"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75eb36236085211c1fb4e22dbeab68b45c643d29528c8a8f24b6a978e23862c5
|
3 |
+
size 2136
|