marimurta commited on
Commit
5a20f71
1 Parent(s): 7241296

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1127.86 +/- 338.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6aa3499764d2abce63cfa3c341154695d9f312d24f4867c10fe64cde8c2c5bf3
3
+ size 129006
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f173adeb670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f173adeb700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f173adeb790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f173adeb820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f173adeb8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f173adeb940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f173adeb9d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f173adeba60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f173adebaf0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f173adebb80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f173adebc10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f173adebca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f173adeac40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 3000000,
63
+ "_total_timesteps": 3000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1680119707504926027,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJ5AJL/KSbi/PcdGv4HL5j4SjYc/AzAkv8KcwT7Dx7U/CCZWP2+nmLzNSYK/QeFCwHyu5r0yr08/IpJuvxKIzD41QYW9iLnjP19mlL6wbOK//mQjv9fYvj6H0S6/NKkBP/Qwkb/H+Ns+ZAgIP28Ohz8nakm/AcPpvsiYwsBU8K2/vknrPukjTD7TdBG+Oxw4wKpnRT8b1bI+Z7XFP0d7Ar1y7ae/w0wQvRDnSj/IMAQ/G8aOP9GbyL3mLyY/ZWJ0PYk5Lr8DwDg9FHZ0v0cMUz9GsGE/x/jbPmQICD/mn3K/tvqJv/kaT760BfU+FrEiPzno3z+sn/G+YYzBvGH2bz8obD8/kT+2v3fLpL+IGqw+f4A0PxVdyT4ruuQ87iR7P+K7uT/7TUS7X90Svrbxgr51/qG+toy/vyaD+b5PB84+9DCRv8f42z5kCAg/bw6HP2xTNL8SkoS/xIaywNDot7+MHxk/i7+yPWwnoL3FOgvAlirrPr7LmT4hmZk/zMrEuy/Jp78+nZ47O/gbPyLyPrx3e0U/DakePHAAYz/UgoA9aCYvv2TAab50VvS+0uSTP0awYT/H+Ns+ZAgIP+afcr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACTpsM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2sIOPgAAAAC2HADAAAAAAE6LGD0AAAAAZ+PtPwAAAABEaQg+AAAAALpf5j8AAAAAPIT1vAAAAABORuK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6I6TNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgETNPzsAAAAAF23fvwAAAAC5CrM9AAAAAOMG3z8AAAAAaidhvAAAAACZE/s/AAAAAMqPej0AAAAAQuDovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFR8RzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBstDQ9AAAAAMeF378AAAAAvTrMPQAAAADcBeU/AAAAACPx+bwAAAAAunbkPwAAAADxDtK9AAAAANaO+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcv4Y0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcFEXPQAAAADi0eq/AAAAAExkxjwAAAAAs/bvPwAAAAColPo9AAAAAEEQ9T8AAAAARLK5PQAAAABxXOO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFjRfEXLvCyMAWyUTTQBjAF0lEdAte3qHP/rB3V9lChoBkdAlawje40/GGgHTegDaAhHQLXvdfmLcbl1fZQoaAZHQJIecL9deIFoB03oA2gIR0C177x3JPqLdX2UKGgGR0CGRILFXJYDaAdN6ANoCEdAtfWaojv/i3V9lChoBkdAkjQqNAC4jWgHTegDaAhHQLX3UQl8gIR1fZQoaAZHQIHs2Zw4sEtoB03oA2gIR0C1+YBnBciXdX2UKGgGR0CIMbAiV0LdaAdN6ANoCEdAtfnE+gUUPHV9lChoBkdAe7ZxRl6JImgHTfABaAhHQLX7QzguRLd1fZQoaAZHQFcByFwkxAVoB03oA2gIR0C1/Yor4FibdX2UKGgGR0CKmFs41gpjaAdNbwNoCEdAtf9gGt6ol3V9lChoBkdAkumua4MF2WgHTegDaAhHQLYA5iO/+Kl1fZQoaAZHQIhUbXSSeRRoB03oA2gIR0C2A06wdKdydX2UKGgGR0CPsYCaqjrSaAdN6ANoCEdAtgXbRRdhRnV9lChoBkdAjeF2HUMG5mgHTegDaAhHQLYHsWsA/9p1fZQoaAZHQI/BCZ2IO6NoB03oA2gIR0C2CMtD2JzldX2UKGgGR0CXSEpaA4GVaAdN6ANoCEdAtgpQulGgBnV9lChoBkdAl7gQQUYbbWgHTegDaAhHQLYMghttQ9B1fZQoaAZHQJekN7fHggpoB03oA2gIR0C2Dn3CTEBKdX2UKGgGR0CYReHVf/m1aAdN6ANoCEdAthAcB8x9HHV9lChoBkdAk8Ur8iwB52gHTegDaAhHQLYScN83Mpx1fZQoaAZHQIJYNpTMqz9oB01kAmgIR0C2FBkBsANodX2UKGgGR0CSmO7iADq4aAdN6ANoCEdAthTRUEPlMnV9lChoBkdAbyA+nIhhY2gHS/toCEdAthZ4OhCdBnV9lChoBkdAjq9gc94eLmgHTegDaAhHQLYXvkupS751fZQoaAZHQIQ/pbKRuCRoB03oA2gIR0C2GT55qubJdX2UKGgGR0CVWkKuSwGGaAdNWANoCEdAthnGGetjkXV9lChoBkdAk8e/a+N96WgHTegDaAhHQLYdHPO6d2B1fZQoaAZHQJU7UVGkN4JoB03oA2gIR0C2HuZTIeYEdX2UKGgGR0CVVi9XtBv8aAdN6ANoCEdAtiE0oG6f8XV9lChoBkdAlfs5n+Q2dmgHTegDaAhHQLYh4d2gWad1fZQoaAZHQIeUspCrtE5oB01MAmgIR0C2IoB/ViF1dX2UKGgGR0CDvCBVdX1baAdN6ANoCEdAtiZ/K0UoKHV9lChoBkdAmrSUgntv42gHTegDaAhHQLYn9q8UVSJ1fZQoaAZHQJBgLrPdEb5oB03oA2gIR0C2KH4uPFNtdX2UKGgGR0CXr5DqW1MNaAdN6ANoCEdAtikeX5WRzXV9lChoBkdAkpY6X0Gu92gHTegDaAhHQLYtyy0a6z51fZQoaAZHQJQfdWgezUtoB03oA2gIR0C2MD/8/D+BdX2UKGgGR0CDjSH8CPp7aAdN6ANoCEdAtjDZWS2Yv3V9lChoBkdAlmjNz8xbjmgHTegDaAhHQLYxdn5SFXd1fZQoaAZHQJBvAYR/ViFoB03oA2gIR0C2NZE7fYSQdX2UKGgGR0CTENF49ovjaAdN6ANoCEdAtjcXUUfxMHV9lChoBkdAhiDbL+xW1mgHTegDaAhHQLY3oB7u2JB1fZQoaAZHQIRwWDL8rI5oB03oA2gIR0C2OEi0OVgQdX2UKGgGR0CJm7MTN+spaAdN6ANoCEdAtj03GDL8rXV9lChoBkdAldIccdYGMWgHTegDaAhHQLY/aZBsyi51fZQoaAZHQI9jFLpRoAZoB03oA2gIR0C2P+95IH1OdX2UKGgGR0CSXQV3EAHWaAdN6ANoCEdAtkCMPczqKXV9lChoBkdAggQrULDyfGgHTegDaAhHQLZEf1Z1V5t1fZQoaAZHQJIPLel9BrxoB03oA2gIR0C2RfpYLb5/dX2UKGgGR0CYFZA31jAjaAdN6ANoCEdAtkZ+MOwxFnV9lChoBkdAlxPFAmiQDGgHTegDaAhHQLZHF67ulXR1fZQoaAZHQJaWCIBRyfdoB03oA2gIR0C2TBL433pOdX2UKGgGR0CTHmT3qRlpaAdN6ANoCEdAtk48Gu9vj3V9lChoBkdAke6N83Mpw2gHTegDaAhHQLZOxgmJFb51fZQoaAZHQJa1PmfXf65oB03oA2gIR0C2T2VktmL+dX2UKGgGR0CS9vU1AJLNaAdN6ANoCEdAtlNt+y7f53V9lChoBkdAln42WY4Qz2gHTegDaAhHQLZU60lZ5iV1fZQoaAZHQJe09J/XoTxoB03oA2gIR0C2VW9q+JxedX2UKGgGR0CRLzDfm9xqaAdN6ANoCEdAtlYOsvIwNHV9lChoBkdAlY70g8r7O2gHTegDaAhHQLZbFdt2s7x1fZQoaAZHQJDgrJ7sv7FoB03oA2gIR0C2XRyauwHJdX2UKGgGR0CUcATRYzSDaAdN6ANoCEdAtl2jeKsMiXV9lChoBkdAikxi/O+qR2gHTegDaAhHQLZeQ/uLJjl1fZQoaAZHQJjkutHQQcxoB03oA2gIR0C2YjmrCFbndX2UKGgGR0CbcrmCAc1gaAdN6ANoCEdAtmO6luWKM3V9lChoBkdAmHPcAR02cmgHTegDaAhHQLZkQtb9qDd1fZQoaAZHQJnMIg2ZRbdoB03oA2gIR0C2ZODTKDChdX2UKGgGR0CZTyRoysS1aAdN6ANoCEdAtmoPncL0BnV9lChoBkdAmO4UAxSHd2gHTegDaAhHQLZsBXfqHGl1fZQoaAZHQJAhgU0vXbxoB03oA2gIR0C2bJiU1Q67dX2UKGgGR0COzixUvPC3aAdN6ANoCEdAtm08mrsByXV9lChoBkdAlHBFzEJjUmgHTegDaAhHQLZxZgqVhTh1fZQoaAZHQJObEK4QSSNoB03oA2gIR0C2cug5Jbt7dX2UKGgGR0CTzcH7xd6caAdN6ANoCEdAtnNzupjtonV9lChoBkdAmiRM5sCT2WgHTegDaAhHQLZ0FuaWom51fZQoaAZHQIDgoGyHEdhoB03oA2gIR0C2eY4lIEr5dX2UKGgGR0CXYl+nZTQ3aAdN6ANoCEdAtns+KVII4XV9lChoBkdAlyjtA9mpVGgHTegDaAhHQLZ7yTWGyop1fZQoaAZHQJqgV7PY4AFoB03oA2gIR0C2fGRHLA58dX2UKGgGR0CV5mi6QNkOaAdN6ANoCEdAtoBy3OObRXV9lChoBkdAm0qjposZpGgHTegDaAhHQLaB/o1UEPl1fZQoaAZHQJi/ZbfP5YZoB03oA2gIR0C2goMHB1s+dX2UKGgGR0CRIM1WbPQfaAdN6ANoCEdAtoMhIxxku3V9lChoBkdAmZDTynUDuGgHTegDaAhHQLaIy1Q66rh1fZQoaAZHQJTqdQwblzVoB03oA2gIR0C2ik9DlYEGdX2UKGgGR0CFhtu7YkE+aAdN6ANoCEdAtoreOmzjWHV9lChoBkdAmxZAeV9nb2gHTegDaAhHQLaLfaCcwxp1fZQoaAZHQJe7xFc6eXloB03oA2gIR0C2j4IhdMTOdX2UKGgGR0CILTz0Yj0MaAdN6ANoCEdAtpD/c2zfJnV9lChoBkdAlU5mfoRqXWgHTegDaAhHQLaRhzzVc2R1fZQoaAZHQJcnyB7NSqFoB03oA2gIR0C2kiwpWmxddX2UKGgGR0CL0CZWq95AaAdN6ANoCEdAtpfK5J9RaXV9lChoBkdAlabu6mO2iWgHTegDaAhHQLaZTaya/h51fZQoaAZHQJT8prZamoBoB03oA2gIR0C2mdesHSncdX2UKGgGR0CMTMavzOHGaAdN6ANoCEdAtpp0ZIg/1XV9lChoBkdAlO5iAMDwIGgHTegDaAhHQLaeaDSPU8V1fZQoaAZHQJM6egAZKnNoB03oA2gIR0C2n+SZWq95dX2UKGgGR0CWH+E0BOpLaAdN6ANoCEdAtqBnsE7nxXV9lChoBkdAmgu7lmvnsGgHTegDaAhHQLahA68xsVN1fZQoaAZHQJAoQ5dWyTpoB03oA2gIR0C2pq0bHZK4dWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 93750,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e286644391fa4650982727667589ac160ceab5a75cf2a185e0e889b466f922bd
3
+ size 56062
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e801a2e51bea87018e0de292427b4a1770f1d64da57983e17ab9ff79d89a19a
3
+ size 56830
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f173adeb670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f173adeb700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f173adeb790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f173adeb820>", "_build": "<function ActorCriticPolicy._build at 0x7f173adeb8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f173adeb940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f173adeb9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f173adeba60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f173adebaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f173adebb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f173adebc10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f173adebca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f173adeac40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680119707504926027, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJ5AJL/KSbi/PcdGv4HL5j4SjYc/AzAkv8KcwT7Dx7U/CCZWP2+nmLzNSYK/QeFCwHyu5r0yr08/IpJuvxKIzD41QYW9iLnjP19mlL6wbOK//mQjv9fYvj6H0S6/NKkBP/Qwkb/H+Ns+ZAgIP28Ohz8nakm/AcPpvsiYwsBU8K2/vknrPukjTD7TdBG+Oxw4wKpnRT8b1bI+Z7XFP0d7Ar1y7ae/w0wQvRDnSj/IMAQ/G8aOP9GbyL3mLyY/ZWJ0PYk5Lr8DwDg9FHZ0v0cMUz9GsGE/x/jbPmQICD/mn3K/tvqJv/kaT760BfU+FrEiPzno3z+sn/G+YYzBvGH2bz8obD8/kT+2v3fLpL+IGqw+f4A0PxVdyT4ruuQ87iR7P+K7uT/7TUS7X90Svrbxgr51/qG+toy/vyaD+b5PB84+9DCRv8f42z5kCAg/bw6HP2xTNL8SkoS/xIaywNDot7+MHxk/i7+yPWwnoL3FOgvAlirrPr7LmT4hmZk/zMrEuy/Jp78+nZ47O/gbPyLyPrx3e0U/DakePHAAYz/UgoA9aCYvv2TAab50VvS+0uSTP0awYT/H+Ns+ZAgIP+afcr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACTpsM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2sIOPgAAAAC2HADAAAAAAE6LGD0AAAAAZ+PtPwAAAABEaQg+AAAAALpf5j8AAAAAPIT1vAAAAABORuK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6I6TNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgETNPzsAAAAAF23fvwAAAAC5CrM9AAAAAOMG3z8AAAAAaidhvAAAAACZE/s/AAAAAMqPej0AAAAAQuDovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFR8RzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBstDQ9AAAAAMeF378AAAAAvTrMPQAAAADcBeU/AAAAACPx+bwAAAAAunbkPwAAAADxDtK9AAAAANaO+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcv4Y0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcFEXPQAAAADi0eq/AAAAAExkxjwAAAAAs/bvPwAAAAColPo9AAAAAEEQ9T8AAAAARLK5PQAAAABxXOO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFjRfEXLvCyMAWyUTTQBjAF0lEdAte3qHP/rB3V9lChoBkdAlawje40/GGgHTegDaAhHQLXvdfmLcbl1fZQoaAZHQJIecL9deIFoB03oA2gIR0C177x3JPqLdX2UKGgGR0CGRILFXJYDaAdN6ANoCEdAtfWaojv/i3V9lChoBkdAkjQqNAC4jWgHTegDaAhHQLX3UQl8gIR1fZQoaAZHQIHs2Zw4sEtoB03oA2gIR0C1+YBnBciXdX2UKGgGR0CIMbAiV0LdaAdN6ANoCEdAtfnE+gUUPHV9lChoBkdAe7ZxRl6JImgHTfABaAhHQLX7QzguRLd1fZQoaAZHQFcByFwkxAVoB03oA2gIR0C1/Yor4FibdX2UKGgGR0CKmFs41gpjaAdNbwNoCEdAtf9gGt6ol3V9lChoBkdAkumua4MF2WgHTegDaAhHQLYA5iO/+Kl1fZQoaAZHQIhUbXSSeRRoB03oA2gIR0C2A06wdKdydX2UKGgGR0CPsYCaqjrSaAdN6ANoCEdAtgXbRRdhRnV9lChoBkdAjeF2HUMG5mgHTegDaAhHQLYHsWsA/9p1fZQoaAZHQI/BCZ2IO6NoB03oA2gIR0C2CMtD2JzldX2UKGgGR0CXSEpaA4GVaAdN6ANoCEdAtgpQulGgBnV9lChoBkdAl7gQQUYbbWgHTegDaAhHQLYMghttQ9B1fZQoaAZHQJekN7fHggpoB03oA2gIR0C2Dn3CTEBKdX2UKGgGR0CYReHVf/m1aAdN6ANoCEdAthAcB8x9HHV9lChoBkdAk8Ur8iwB52gHTegDaAhHQLYScN83Mpx1fZQoaAZHQIJYNpTMqz9oB01kAmgIR0C2FBkBsANodX2UKGgGR0CSmO7iADq4aAdN6ANoCEdAthTRUEPlMnV9lChoBkdAbyA+nIhhY2gHS/toCEdAthZ4OhCdBnV9lChoBkdAjq9gc94eLmgHTegDaAhHQLYXvkupS751fZQoaAZHQIQ/pbKRuCRoB03oA2gIR0C2GT55qubJdX2UKGgGR0CVWkKuSwGGaAdNWANoCEdAthnGGetjkXV9lChoBkdAk8e/a+N96WgHTegDaAhHQLYdHPO6d2B1fZQoaAZHQJU7UVGkN4JoB03oA2gIR0C2HuZTIeYEdX2UKGgGR0CVVi9XtBv8aAdN6ANoCEdAtiE0oG6f8XV9lChoBkdAlfs5n+Q2dmgHTegDaAhHQLYh4d2gWad1fZQoaAZHQIeUspCrtE5oB01MAmgIR0C2IoB/ViF1dX2UKGgGR0CDvCBVdX1baAdN6ANoCEdAtiZ/K0UoKHV9lChoBkdAmrSUgntv42gHTegDaAhHQLYn9q8UVSJ1fZQoaAZHQJBgLrPdEb5oB03oA2gIR0C2KH4uPFNtdX2UKGgGR0CXr5DqW1MNaAdN6ANoCEdAtikeX5WRzXV9lChoBkdAkpY6X0Gu92gHTegDaAhHQLYtyy0a6z51fZQoaAZHQJQfdWgezUtoB03oA2gIR0C2MD/8/D+BdX2UKGgGR0CDjSH8CPp7aAdN6ANoCEdAtjDZWS2Yv3V9lChoBkdAlmjNz8xbjmgHTegDaAhHQLYxdn5SFXd1fZQoaAZHQJBvAYR/ViFoB03oA2gIR0C2NZE7fYSQdX2UKGgGR0CTENF49ovjaAdN6ANoCEdAtjcXUUfxMHV9lChoBkdAhiDbL+xW1mgHTegDaAhHQLY3oB7u2JB1fZQoaAZHQIRwWDL8rI5oB03oA2gIR0C2OEi0OVgQdX2UKGgGR0CJm7MTN+spaAdN6ANoCEdAtj03GDL8rXV9lChoBkdAldIccdYGMWgHTegDaAhHQLY/aZBsyi51fZQoaAZHQI9jFLpRoAZoB03oA2gIR0C2P+95IH1OdX2UKGgGR0CSXQV3EAHWaAdN6ANoCEdAtkCMPczqKXV9lChoBkdAggQrULDyfGgHTegDaAhHQLZEf1Z1V5t1fZQoaAZHQJIPLel9BrxoB03oA2gIR0C2RfpYLb5/dX2UKGgGR0CYFZA31jAjaAdN6ANoCEdAtkZ+MOwxFnV9lChoBkdAlxPFAmiQDGgHTegDaAhHQLZHF67ulXR1fZQoaAZHQJaWCIBRyfdoB03oA2gIR0C2TBL433pOdX2UKGgGR0CTHmT3qRlpaAdN6ANoCEdAtk48Gu9vj3V9lChoBkdAke6N83Mpw2gHTegDaAhHQLZOxgmJFb51fZQoaAZHQJa1PmfXf65oB03oA2gIR0C2T2VktmL+dX2UKGgGR0CS9vU1AJLNaAdN6ANoCEdAtlNt+y7f53V9lChoBkdAln42WY4Qz2gHTegDaAhHQLZU60lZ5iV1fZQoaAZHQJe09J/XoTxoB03oA2gIR0C2VW9q+JxedX2UKGgGR0CRLzDfm9xqaAdN6ANoCEdAtlYOsvIwNHV9lChoBkdAlY70g8r7O2gHTegDaAhHQLZbFdt2s7x1fZQoaAZHQJDgrJ7sv7FoB03oA2gIR0C2XRyauwHJdX2UKGgGR0CUcATRYzSDaAdN6ANoCEdAtl2jeKsMiXV9lChoBkdAikxi/O+qR2gHTegDaAhHQLZeQ/uLJjl1fZQoaAZHQJjkutHQQcxoB03oA2gIR0C2YjmrCFbndX2UKGgGR0CbcrmCAc1gaAdN6ANoCEdAtmO6luWKM3V9lChoBkdAmHPcAR02cmgHTegDaAhHQLZkQtb9qDd1fZQoaAZHQJnMIg2ZRbdoB03oA2gIR0C2ZODTKDChdX2UKGgGR0CZTyRoysS1aAdN6ANoCEdAtmoPncL0BnV9lChoBkdAmO4UAxSHd2gHTegDaAhHQLZsBXfqHGl1fZQoaAZHQJAhgU0vXbxoB03oA2gIR0C2bJiU1Q67dX2UKGgGR0COzixUvPC3aAdN6ANoCEdAtm08mrsByXV9lChoBkdAlHBFzEJjUmgHTegDaAhHQLZxZgqVhTh1fZQoaAZHQJObEK4QSSNoB03oA2gIR0C2cug5Jbt7dX2UKGgGR0CTzcH7xd6caAdN6ANoCEdAtnNzupjtonV9lChoBkdAmiRM5sCT2WgHTegDaAhHQLZ0FuaWom51fZQoaAZHQIDgoGyHEdhoB03oA2gIR0C2eY4lIEr5dX2UKGgGR0CXYl+nZTQ3aAdN6ANoCEdAtns+KVII4XV9lChoBkdAlyjtA9mpVGgHTegDaAhHQLZ7yTWGyop1fZQoaAZHQJqgV7PY4AFoB03oA2gIR0C2fGRHLA58dX2UKGgGR0CV5mi6QNkOaAdN6ANoCEdAtoBy3OObRXV9lChoBkdAm0qjposZpGgHTegDaAhHQLaB/o1UEPl1fZQoaAZHQJi/ZbfP5YZoB03oA2gIR0C2goMHB1s+dX2UKGgGR0CRIM1WbPQfaAdN6ANoCEdAtoMhIxxku3V9lChoBkdAmZDTynUDuGgHTegDaAhHQLaIy1Q66rh1fZQoaAZHQJTqdQwblzVoB03oA2gIR0C2ik9DlYEGdX2UKGgGR0CFhtu7YkE+aAdN6ANoCEdAtoreOmzjWHV9lChoBkdAmxZAeV9nb2gHTegDaAhHQLaLfaCcwxp1fZQoaAZHQJe7xFc6eXloB03oA2gIR0C2j4IhdMTOdX2UKGgGR0CILTz0Yj0MaAdN6ANoCEdAtpD/c2zfJnV9lChoBkdAlU5mfoRqXWgHTegDaAhHQLaRhzzVc2R1fZQoaAZHQJcnyB7NSqFoB03oA2gIR0C2kiwpWmxddX2UKGgGR0CL0CZWq95AaAdN6ANoCEdAtpfK5J9RaXV9lChoBkdAlabu6mO2iWgHTegDaAhHQLaZTaya/h51fZQoaAZHQJT8prZamoBoB03oA2gIR0C2mdesHSncdX2UKGgGR0CMTMavzOHGaAdN6ANoCEdAtpp0ZIg/1XV9lChoBkdAlO5iAMDwIGgHTegDaAhHQLaeaDSPU8V1fZQoaAZHQJM6egAZKnNoB03oA2gIR0C2n+SZWq95dX2UKGgGR0CWH+E0BOpLaAdN6ANoCEdAtqBnsE7nxXV9lChoBkdAmgu7lmvnsGgHTegDaAhHQLahA68xsVN1fZQoaAZHQJAoQ5dWyTpoB03oA2gIR0C2pq0bHZK4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 93750, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (965 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1127.8593117635696, "std_reward": 338.1211973416329, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-30T09:33:41.093586"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75eb36236085211c1fb4e22dbeab68b45c643d29528c8a8f24b6a978e23862c5
3
+ size 2136