marinone94
commited on
Commit
•
841dcc3
1
Parent(s):
12706a1
update model card
Browse files- README.md +19 -9
- run_eval_whisper_streaming.py +164 -0
README.md
CHANGED
@@ -8,11 +8,15 @@ tags:
|
|
8 |
- whisper-event
|
9 |
- generated_from_trainer
|
10 |
datasets:
|
11 |
-
- mozilla-foundation/common_voice_11_0
|
|
|
|
|
12 |
- babelbox/babelbox_voice
|
13 |
- NbAiLab/NST
|
14 |
- NbAiLab/NPSC
|
15 |
-
- google/fleurs
|
|
|
|
|
16 |
metrics:
|
17 |
- wer
|
18 |
model-index:
|
@@ -53,15 +57,9 @@ model-index:
|
|
53 |
metrics:
|
54 |
- name: Wer
|
55 |
type: wer
|
56 |
-
value: 37.02
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
---
|
61 |
|
62 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
63 |
-
should probably proofread and complete it, then remove this comment. -->
|
64 |
-
|
65 |
# Whisper Medium Nordic
|
66 |
|
67 |
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the [mozilla-foundation/common_voice_11_0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) (sv-SE, da, nn-NO), the [babelbox/babelbox_voice](https://huggingface.co/datasets/babelbox/babelbox_voice) (Swedish radio), the [NbAiLab/NST](https://huggingface.co/datasets/NbAiLab/NST) (Norwegian radio), the [NbAiLab/NPSC](https://huggingface.co/datasets/NbAiLab/NPSC) (Norwegian parliament) and the [google/fleurs](https://huggingface.co/datasets/google/fleurs) (sv_se, da_dk, nb_no) datasets. The goal is to leverage transfer learning across Nordic languages, which have strong similarities.
|
@@ -122,3 +120,15 @@ The following hyperparameters were used during training:
|
|
122 |
- Pytorch 1.13.1+cu117
|
123 |
- Datasets 2.7.1.dev0
|
124 |
- Tokenizers 0.13.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
- whisper-event
|
9 |
- generated_from_trainer
|
10 |
datasets:
|
11 |
+
- mozilla-foundation/common_voice_11_0 (sv-SE)
|
12 |
+
- mozilla-foundation/common_voice_11_0 (da)
|
13 |
+
- mozilla-foundation/common_voice_11_0 (nn-NO)
|
14 |
- babelbox/babelbox_voice
|
15 |
- NbAiLab/NST
|
16 |
- NbAiLab/NPSC
|
17 |
+
- google/fleurs (sv_se)
|
18 |
+
- google/fleurs (da_dk)
|
19 |
+
- google/fleurs (nb_no)
|
20 |
metrics:
|
21 |
- wer
|
22 |
model-index:
|
|
|
57 |
metrics:
|
58 |
- name: Wer
|
59 |
type: wer
|
60 |
+
value: 37.02
|
|
|
|
|
|
|
61 |
---
|
62 |
|
|
|
|
|
|
|
63 |
# Whisper Medium Nordic
|
64 |
|
65 |
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the [mozilla-foundation/common_voice_11_0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) (sv-SE, da, nn-NO), the [babelbox/babelbox_voice](https://huggingface.co/datasets/babelbox/babelbox_voice) (Swedish radio), the [NbAiLab/NST](https://huggingface.co/datasets/NbAiLab/NST) (Norwegian radio), the [NbAiLab/NPSC](https://huggingface.co/datasets/NbAiLab/NPSC) (Norwegian parliament) and the [google/fleurs](https://huggingface.co/datasets/google/fleurs) (sv_se, da_dk, nb_no) datasets. The goal is to leverage transfer learning across Nordic languages, which have strong similarities.
|
|
|
120 |
- Pytorch 1.13.1+cu117
|
121 |
- Datasets 2.7.1.dev0
|
122 |
- Tokenizers 0.13.2
|
123 |
+
|
124 |
+
### WandB run
|
125 |
+
https://wandb.ai/pn-aa/whisper/runs/xc70fbwv?workspace=user-emilio_marinone
|
126 |
+
|
127 |
+
### Baseline model
|
128 |
+
This model finetuned whisper-medium, and here we can observe imrpovements when evaluated on CommonVoice 11 Swedish(sv-SE), Danish(da), and Norwegian (nn-NO) test splits.
|
129 |
+
|
130 |
+
| Language | Whisper Medium (WER) | Whisper Medium Nordic (WER) |
|
131 |
+
|:--------:|:--------------------:|:---------------------------:|
|
132 |
+
| sv-SE | 14.93 | 11.31 |
|
133 |
+
| da | 20.85 | 14.86 |
|
134 |
+
| nn-NO | 50.82 | 37.02
|
run_eval_whisper_streaming.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
from transformers import pipeline
|
4 |
+
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
|
5 |
+
from datasets import load_dataset, Audio
|
6 |
+
import evaluate
|
7 |
+
|
8 |
+
wer_metric = evaluate.load("wer")
|
9 |
+
|
10 |
+
|
11 |
+
def is_target_text_in_range(ref):
|
12 |
+
if ref.strip() == "ignore time segment in scoring":
|
13 |
+
return False
|
14 |
+
else:
|
15 |
+
return ref.strip() != ""
|
16 |
+
|
17 |
+
|
18 |
+
def get_text(sample):
|
19 |
+
if "text" in sample:
|
20 |
+
return sample["text"]
|
21 |
+
elif "sentence" in sample:
|
22 |
+
return sample["sentence"]
|
23 |
+
elif "normalized_text" in sample:
|
24 |
+
return sample["normalized_text"]
|
25 |
+
elif "transcript" in sample:
|
26 |
+
return sample["transcript"]
|
27 |
+
elif "transcription" in sample:
|
28 |
+
return sample["transcription"]
|
29 |
+
else:
|
30 |
+
raise ValueError(
|
31 |
+
f"Expected transcript column of either 'text', 'sentence', 'normalized_text' or 'transcript'. Got sample of "
|
32 |
+
".join{sample.keys()}. Ensure a text column name is present in the dataset."
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
whisper_norm = BasicTextNormalizer()
|
37 |
+
|
38 |
+
|
39 |
+
def normalise(batch):
|
40 |
+
batch["norm_text"] = whisper_norm(get_text(batch))
|
41 |
+
return batch
|
42 |
+
|
43 |
+
|
44 |
+
def data(dataset):
|
45 |
+
for i, item in enumerate(dataset):
|
46 |
+
yield {**item["audio"], "reference": item["norm_text"]}
|
47 |
+
|
48 |
+
|
49 |
+
def main(args):
|
50 |
+
batch_size = args.batch_size
|
51 |
+
whisper_asr = pipeline(
|
52 |
+
"automatic-speech-recognition", model=args.model_id, device=args.device
|
53 |
+
)
|
54 |
+
print("pipe loaded")
|
55 |
+
whisper_asr.model.config.forced_decoder_ids = (
|
56 |
+
whisper_asr.tokenizer.get_decoder_prompt_ids(
|
57 |
+
language=args.language, task="transcribe"
|
58 |
+
)
|
59 |
+
)
|
60 |
+
|
61 |
+
dataset = load_dataset(
|
62 |
+
args.dataset,
|
63 |
+
args.config,
|
64 |
+
split=args.split,
|
65 |
+
streaming=args.streaming,
|
66 |
+
use_auth_token=True,
|
67 |
+
)
|
68 |
+
print("ds init")
|
69 |
+
|
70 |
+
# Only uncomment for debugging
|
71 |
+
dataset = dataset.take(args.max_eval_samples)
|
72 |
+
|
73 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
|
74 |
+
dataset = dataset.map(normalise)
|
75 |
+
dataset = dataset.filter(is_target_text_in_range, input_columns=["norm_text"])
|
76 |
+
|
77 |
+
predictions = []
|
78 |
+
references = []
|
79 |
+
print("starting eval...")
|
80 |
+
# run streamed inference
|
81 |
+
for out in whisper_asr(data(dataset), batch_size=batch_size):
|
82 |
+
predictions.append(whisper_norm(out["text"]))
|
83 |
+
references.append(out["reference"][0])
|
84 |
+
print("computing wer")
|
85 |
+
wer = wer_metric.compute(references=references, predictions=predictions)
|
86 |
+
wer = round(100 * wer, 2)
|
87 |
+
|
88 |
+
print("WER:", wer)
|
89 |
+
print("pushing metric to hub")
|
90 |
+
evaluate.push_to_hub(
|
91 |
+
model_id=args.model_id,
|
92 |
+
metric_value=wer,
|
93 |
+
metric_type="wer",
|
94 |
+
metric_name="WER",
|
95 |
+
dataset_name=args.dataset,
|
96 |
+
dataset_type=args.dataset,
|
97 |
+
dataset_split=args.split,
|
98 |
+
dataset_config=args.config,
|
99 |
+
task_type="automatic-speech-recognition",
|
100 |
+
task_name="Automatic Speech Recognition"
|
101 |
+
)
|
102 |
+
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
parser = argparse.ArgumentParser()
|
106 |
+
|
107 |
+
parser.add_argument(
|
108 |
+
"--model_id",
|
109 |
+
type=str,
|
110 |
+
required=True,
|
111 |
+
help="Model identifier. Should be loadable with 🤗 Transformers",
|
112 |
+
)
|
113 |
+
parser.add_argument(
|
114 |
+
"--dataset",
|
115 |
+
type=str,
|
116 |
+
default="mozilla-foundation/common_voice_11_0",
|
117 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
118 |
+
)
|
119 |
+
parser.add_argument(
|
120 |
+
"--config",
|
121 |
+
type=str,
|
122 |
+
required=True,
|
123 |
+
help="Config of the dataset. *E.g.* `'en'` for the English split of Common Voice",
|
124 |
+
)
|
125 |
+
parser.add_argument(
|
126 |
+
"--split",
|
127 |
+
type=str,
|
128 |
+
default="test",
|
129 |
+
help="Split of the dataset. *E.g.* `'test'`",
|
130 |
+
)
|
131 |
+
|
132 |
+
parser.add_argument(
|
133 |
+
"--device",
|
134 |
+
type=int,
|
135 |
+
default=-1,
|
136 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
137 |
+
)
|
138 |
+
parser.add_argument(
|
139 |
+
"--batch_size",
|
140 |
+
type=int,
|
141 |
+
default=16,
|
142 |
+
help="Number of samples to go through each streamed batch.",
|
143 |
+
)
|
144 |
+
parser.add_argument(
|
145 |
+
"--max_eval_samples",
|
146 |
+
type=int,
|
147 |
+
default=None,
|
148 |
+
help="Number of samples to be evaluated. Put a lower number e.g. 64 for testing this script.",
|
149 |
+
)
|
150 |
+
parser.add_argument(
|
151 |
+
"--streaming",
|
152 |
+
type=bool,
|
153 |
+
default=True,
|
154 |
+
help="Choose whether you'd like to download the entire dataset or stream it during the evaluation.",
|
155 |
+
)
|
156 |
+
parser.add_argument(
|
157 |
+
"--language",
|
158 |
+
type=str,
|
159 |
+
required=True,
|
160 |
+
help="Two letter language code for the transcription language, e.g. use 'en' for English.",
|
161 |
+
)
|
162 |
+
args = parser.parse_args()
|
163 |
+
|
164 |
+
main(args)
|