marinone94
commited on
Commit
•
43dd921
1
Parent(s):
4123391
End of training
Browse files- all_results.json +15 -15
- eval_results.json +5 -5
- huggingface_training.py +43 -42
- pytorch_model.bin +1 -1
- test_results.json +6 -6
- train_results.json +5 -5
- trainer_state.json +34 -700
- training_args.bin +1 -1
all_results.json
CHANGED
@@ -1,17 +1,17 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_loss": 1.
|
4 |
-
"eval_runtime":
|
5 |
-
"eval_samples_per_second":
|
6 |
-
"eval_steps_per_second": 0.
|
7 |
-
"eval_wer":
|
8 |
-
"test_loss":
|
9 |
-
"test_runtime":
|
10 |
-
"test_samples_per_second":
|
11 |
-
"test_steps_per_second": 0.
|
12 |
-
"test_wer":
|
13 |
-
"train_loss":
|
14 |
-
"train_runtime":
|
15 |
-
"train_samples_per_second":
|
16 |
-
"train_steps_per_second": 0.
|
17 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"eval_loss": 1.6191972494125366,
|
4 |
+
"eval_runtime": 56.3363,
|
5 |
+
"eval_samples_per_second": 0.071,
|
6 |
+
"eval_steps_per_second": 0.036,
|
7 |
+
"eval_wer": 153.2258064516129,
|
8 |
+
"test_loss": 1.7568330764770508,
|
9 |
+
"test_runtime": 37.8582,
|
10 |
+
"test_samples_per_second": 0.106,
|
11 |
+
"test_steps_per_second": 0.053,
|
12 |
+
"test_wer": 138.5964912280702,
|
13 |
+
"train_loss": 1.4339025020599365,
|
14 |
+
"train_runtime": 108.1566,
|
15 |
+
"train_samples_per_second": 0.074,
|
16 |
+
"train_steps_per_second": 0.018
|
17 |
}
|
eval_results.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
-
"eval_loss": 1.
|
3 |
-
"eval_runtime":
|
4 |
-
"eval_samples_per_second":
|
5 |
-
"eval_steps_per_second": 0.
|
6 |
-
"eval_wer":
|
7 |
}
|
|
|
1 |
{
|
2 |
+
"eval_loss": 1.6191972494125366,
|
3 |
+
"eval_runtime": 56.3363,
|
4 |
+
"eval_samples_per_second": 0.071,
|
5 |
+
"eval_steps_per_second": 0.036,
|
6 |
+
"eval_wer": 153.2258064516129
|
7 |
}
|
huggingface_training.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
""" Whisper training script using Hugging Face Transformers. """
|
2 |
|
3 |
-
import os # used to
|
|
|
4 |
from dataclasses import dataclass # used to define data collator
|
5 |
from math import ceil # used to round up decimals
|
6 |
|
@@ -321,60 +322,60 @@ I hope you haven't left yet. If you have, bad for you, as we are ready for train
|
|
321 |
As Whisper is a pretrained model ready to be used off-the-shelf, it is advisable to evaluate it before training on both the validation and test sets. Let's make sure we make no harm to it.
|
322 |
"""
|
323 |
|
324 |
-
eval_metrics = trainer.evaluate(
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
)
|
331 |
|
332 |
-
trainer.log_metrics("eval", eval_metrics)
|
333 |
-
trainer.save_metrics("eval", eval_metrics)
|
334 |
-
print(eval_metrics)
|
335 |
|
336 |
-
test_metrics = trainer.evaluate(
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
)
|
343 |
|
344 |
-
trainer.log_metrics("test", test_metrics)
|
345 |
-
trainer.save_metrics("test", test_metrics)
|
346 |
-
print(test_metrics)
|
347 |
|
348 |
-
train_result = trainer.train()
|
349 |
-
trainer.save_model()
|
350 |
|
351 |
-
metrics = train_result.metrics
|
352 |
-
trainer.log_metrics("train", metrics)
|
353 |
-
trainer.save_metrics("train", metrics)
|
354 |
-
trainer.save_state()
|
355 |
-
print(metrics)
|
356 |
|
357 |
-
"""ADD SOMETHING ABOUT THE TRAINING.
|
358 |
|
359 |
-
Now let's evaluate the
|
360 |
-
"""
|
361 |
|
362 |
-
final_metrics = trainer.evaluate(
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
)
|
369 |
|
370 |
-
trainer.log_metrics("test", final_metrics)
|
371 |
-
trainer.save_metrics("test", final_metrics)
|
372 |
-
print(final_metrics)
|
373 |
|
374 |
# Pushing to hub during training slows down training
|
375 |
# so we push it only in the end.
|
376 |
# Since training is completed and best model has been saved, we first delete the checkpoints
|
377 |
for filename in os.listdir("."):
|
378 |
if filename.startswith("checkpoint-"):
|
379 |
-
|
380 |
trainer.push_to_hub()
|
|
|
1 |
""" Whisper training script using Hugging Face Transformers. """
|
2 |
|
3 |
+
import os # used to find checkpoints
|
4 |
+
import shutil
|
5 |
from dataclasses import dataclass # used to define data collator
|
6 |
from math import ceil # used to round up decimals
|
7 |
|
|
|
322 |
As Whisper is a pretrained model ready to be used off-the-shelf, it is advisable to evaluate it before training on both the validation and test sets. Let's make sure we make no harm to it.
|
323 |
"""
|
324 |
|
325 |
+
# eval_metrics = trainer.evaluate(
|
326 |
+
# eval_dataset=preprocessed_dataset["validation"],
|
327 |
+
# metric_key_prefix="eval",
|
328 |
+
# max_length=448,
|
329 |
+
# num_beams=1,
|
330 |
+
# # gen_kwargs={"key": value} to provide additional generation specific arguments by keyword
|
331 |
+
# )
|
332 |
|
333 |
+
# trainer.log_metrics("eval", eval_metrics)
|
334 |
+
# trainer.save_metrics("eval", eval_metrics)
|
335 |
+
# print(eval_metrics)
|
336 |
|
337 |
+
# test_metrics = trainer.evaluate(
|
338 |
+
# eval_dataset=preprocessed_dataset["test"],
|
339 |
+
# metric_key_prefix="test",
|
340 |
+
# max_length=448,
|
341 |
+
# num_beams=1,
|
342 |
+
# # gen_kwargs={"key": value} to provide additional generation specific arguments by keyword
|
343 |
+
# )
|
344 |
|
345 |
+
# trainer.log_metrics("test", test_metrics)
|
346 |
+
# trainer.save_metrics("test", test_metrics)
|
347 |
+
# print(test_metrics)
|
348 |
|
349 |
+
# train_result = trainer.train()
|
350 |
+
# trainer.save_model()
|
351 |
|
352 |
+
# metrics = train_result.metrics
|
353 |
+
# trainer.log_metrics("train", metrics)
|
354 |
+
# trainer.save_metrics("train", metrics)
|
355 |
+
# trainer.save_state()
|
356 |
+
# print(metrics)
|
357 |
|
358 |
+
# """ADD SOMETHING ABOUT THE TRAINING.
|
359 |
|
360 |
+
# Now let's evaluate the
|
361 |
+
# """
|
362 |
|
363 |
+
# final_metrics = trainer.evaluate(
|
364 |
+
# eval_dataset=preprocessed_dataset["test"],
|
365 |
+
# metric_key_prefix="test",
|
366 |
+
# max_length=448,
|
367 |
+
# num_beams=1,
|
368 |
+
# # gen_kwargs={"key": value} to provide additional generation specific arguments by keyword
|
369 |
+
# )
|
370 |
|
371 |
+
# trainer.log_metrics("test", final_metrics)
|
372 |
+
# trainer.save_metrics("test", final_metrics)
|
373 |
+
# print(final_metrics)
|
374 |
|
375 |
# Pushing to hub during training slows down training
|
376 |
# so we push it only in the end.
|
377 |
# Since training is completed and best model has been saved, we first delete the checkpoints
|
378 |
for filename in os.listdir("."):
|
379 |
if filename.startswith("checkpoint-"):
|
380 |
+
shutil.rmtree(f"./{filename}")
|
381 |
trainer.push_to_hub()
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 151098921
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3843686519777a4550909e8bd4961dcf7425e7183295f03d09a433a271f0887
|
3 |
size 151098921
|
test_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"test_loss":
|
4 |
-
"test_runtime":
|
5 |
-
"test_samples_per_second":
|
6 |
-
"test_steps_per_second": 0.
|
7 |
-
"test_wer":
|
8 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"test_loss": 1.7568330764770508,
|
4 |
+
"test_runtime": 37.8582,
|
5 |
+
"test_samples_per_second": 0.106,
|
6 |
+
"test_steps_per_second": 0.053,
|
7 |
+
"test_wer": 138.5964912280702
|
8 |
}
|
train_results.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"train_loss":
|
4 |
-
"train_runtime":
|
5 |
-
"train_samples_per_second":
|
6 |
-
"train_steps_per_second": 0.
|
7 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"train_loss": 1.4339025020599365,
|
4 |
+
"train_runtime": 108.1566,
|
5 |
+
"train_samples_per_second": 0.074,
|
6 |
+
"train_steps_per_second": 0.018
|
7 |
}
|
trainer_state.json
CHANGED
@@ -1,721 +1,55 @@
|
|
1 |
{
|
2 |
-
"best_metric":
|
3 |
-
"best_model_checkpoint":
|
4 |
-
"epoch":
|
5 |
-
"global_step":
|
6 |
"is_hyper_param_search": false,
|
7 |
"is_local_process_zero": true,
|
8 |
"is_world_process_zero": true,
|
9 |
"log_history": [
|
10 |
{
|
11 |
-
"epoch": 0.
|
12 |
"learning_rate": 0.0,
|
13 |
-
"loss": 1.
|
14 |
-
"step":
|
15 |
},
|
16 |
{
|
17 |
-
"epoch": 0.
|
18 |
-
"
|
19 |
-
"
|
20 |
-
"
|
|
|
|
|
|
|
21 |
},
|
22 |
{
|
23 |
-
"epoch": 0
|
24 |
-
"learning_rate":
|
25 |
-
"loss": 1.
|
26 |
-
"step":
|
27 |
},
|
28 |
{
|
29 |
-
"epoch": 0
|
30 |
-
"
|
31 |
-
"
|
32 |
-
"
|
|
|
|
|
|
|
33 |
},
|
34 |
{
|
35 |
-
"epoch": 0
|
36 |
-
"
|
37 |
-
"
|
38 |
-
"
|
39 |
-
|
40 |
-
|
41 |
-
"
|
42 |
-
"learning_rate": 2.317073170731708e-06,
|
43 |
-
"loss": 1.5201,
|
44 |
-
"step": 24
|
45 |
-
},
|
46 |
-
{
|
47 |
-
"epoch": 0.07,
|
48 |
-
"learning_rate": 2.8048780487804884e-06,
|
49 |
-
"loss": 1.3982,
|
50 |
-
"step": 28
|
51 |
-
},
|
52 |
-
{
|
53 |
-
"epoch": 0.08,
|
54 |
-
"learning_rate": 3.292682926829269e-06,
|
55 |
-
"loss": 1.3541,
|
56 |
-
"step": 32
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"epoch": 0.09,
|
60 |
-
"learning_rate": 3.780487804878049e-06,
|
61 |
-
"loss": 1.2092,
|
62 |
-
"step": 36
|
63 |
-
},
|
64 |
-
{
|
65 |
-
"epoch": 0.1,
|
66 |
-
"learning_rate": 4.268292682926829e-06,
|
67 |
-
"loss": 1.1599,
|
68 |
-
"step": 40
|
69 |
-
},
|
70 |
-
{
|
71 |
-
"epoch": 0.1,
|
72 |
-
"eval_loss": 1.142654299736023,
|
73 |
-
"eval_runtime": 101.9854,
|
74 |
-
"eval_samples_per_second": 3.863,
|
75 |
-
"eval_steps_per_second": 0.127,
|
76 |
-
"eval_wer": 15.213946117274169,
|
77 |
-
"step": 40
|
78 |
-
},
|
79 |
-
{
|
80 |
-
"epoch": 1.01,
|
81 |
-
"learning_rate": 4.75609756097561e-06,
|
82 |
-
"loss": 1.0124,
|
83 |
-
"step": 44
|
84 |
-
},
|
85 |
-
{
|
86 |
-
"epoch": 1.02,
|
87 |
-
"learning_rate": 5.243902439024391e-06,
|
88 |
-
"loss": 0.9171,
|
89 |
-
"step": 48
|
90 |
-
},
|
91 |
-
{
|
92 |
-
"epoch": 1.03,
|
93 |
-
"learning_rate": 5.731707317073171e-06,
|
94 |
-
"loss": 0.8027,
|
95 |
-
"step": 52
|
96 |
-
},
|
97 |
-
{
|
98 |
-
"epoch": 1.04,
|
99 |
-
"learning_rate": 6.219512195121951e-06,
|
100 |
-
"loss": 0.7284,
|
101 |
-
"step": 56
|
102 |
-
},
|
103 |
-
{
|
104 |
-
"epoch": 1.05,
|
105 |
-
"learning_rate": 6.707317073170733e-06,
|
106 |
-
"loss": 0.6185,
|
107 |
-
"step": 60
|
108 |
-
},
|
109 |
-
{
|
110 |
-
"epoch": 1.06,
|
111 |
-
"learning_rate": 7.1951219512195125e-06,
|
112 |
-
"loss": 0.57,
|
113 |
-
"step": 64
|
114 |
-
},
|
115 |
-
{
|
116 |
-
"epoch": 1.07,
|
117 |
-
"learning_rate": 7.682926829268293e-06,
|
118 |
-
"loss": 0.4985,
|
119 |
-
"step": 68
|
120 |
-
},
|
121 |
-
{
|
122 |
-
"epoch": 1.08,
|
123 |
-
"learning_rate": 8.170731707317073e-06,
|
124 |
-
"loss": 0.488,
|
125 |
-
"step": 72
|
126 |
-
},
|
127 |
-
{
|
128 |
-
"epoch": 1.09,
|
129 |
-
"learning_rate": 8.658536585365854e-06,
|
130 |
-
"loss": 0.4569,
|
131 |
-
"step": 76
|
132 |
-
},
|
133 |
-
{
|
134 |
-
"epoch": 1.1,
|
135 |
-
"learning_rate": 9.146341463414635e-06,
|
136 |
-
"loss": 0.4655,
|
137 |
-
"step": 80
|
138 |
-
},
|
139 |
-
{
|
140 |
-
"epoch": 1.1,
|
141 |
-
"eval_loss": 0.5613037943840027,
|
142 |
-
"eval_runtime": 91.9697,
|
143 |
-
"eval_samples_per_second": 4.284,
|
144 |
-
"eval_steps_per_second": 0.141,
|
145 |
-
"eval_wer": 17.591125198098258,
|
146 |
-
"step": 80
|
147 |
-
},
|
148 |
-
{
|
149 |
-
"epoch": 2.0,
|
150 |
-
"learning_rate": 9.634146341463415e-06,
|
151 |
-
"loss": 0.425,
|
152 |
-
"step": 84
|
153 |
-
},
|
154 |
-
{
|
155 |
-
"epoch": 2.01,
|
156 |
-
"learning_rate": 9.96923076923077e-06,
|
157 |
-
"loss": 0.4162,
|
158 |
-
"step": 88
|
159 |
-
},
|
160 |
-
{
|
161 |
-
"epoch": 2.02,
|
162 |
-
"learning_rate": 9.846153846153848e-06,
|
163 |
-
"loss": 0.3809,
|
164 |
-
"step": 92
|
165 |
-
},
|
166 |
-
{
|
167 |
-
"epoch": 2.03,
|
168 |
-
"learning_rate": 9.723076923076924e-06,
|
169 |
-
"loss": 0.3533,
|
170 |
-
"step": 96
|
171 |
-
},
|
172 |
-
{
|
173 |
-
"epoch": 2.04,
|
174 |
-
"learning_rate": 9.600000000000001e-06,
|
175 |
-
"loss": 0.3511,
|
176 |
-
"step": 100
|
177 |
-
},
|
178 |
-
{
|
179 |
-
"epoch": 2.05,
|
180 |
-
"learning_rate": 9.476923076923079e-06,
|
181 |
-
"loss": 0.3475,
|
182 |
-
"step": 104
|
183 |
-
},
|
184 |
-
{
|
185 |
-
"epoch": 2.06,
|
186 |
-
"learning_rate": 9.353846153846155e-06,
|
187 |
-
"loss": 0.321,
|
188 |
-
"step": 108
|
189 |
-
},
|
190 |
-
{
|
191 |
-
"epoch": 2.07,
|
192 |
-
"learning_rate": 9.230769230769232e-06,
|
193 |
-
"loss": 0.2859,
|
194 |
-
"step": 112
|
195 |
-
},
|
196 |
-
{
|
197 |
-
"epoch": 2.08,
|
198 |
-
"learning_rate": 9.107692307692308e-06,
|
199 |
-
"loss": 0.3191,
|
200 |
-
"step": 116
|
201 |
-
},
|
202 |
-
{
|
203 |
-
"epoch": 2.09,
|
204 |
-
"learning_rate": 8.984615384615386e-06,
|
205 |
-
"loss": 0.2753,
|
206 |
-
"step": 120
|
207 |
-
},
|
208 |
-
{
|
209 |
-
"epoch": 2.09,
|
210 |
-
"eval_loss": 0.5241264700889587,
|
211 |
-
"eval_runtime": 88.0526,
|
212 |
-
"eval_samples_per_second": 4.475,
|
213 |
-
"eval_steps_per_second": 0.148,
|
214 |
-
"eval_wer": 17.21321467755699,
|
215 |
-
"step": 120
|
216 |
-
},
|
217 |
-
{
|
218 |
-
"epoch": 3.0,
|
219 |
-
"learning_rate": 8.861538461538463e-06,
|
220 |
-
"loss": 0.3104,
|
221 |
-
"step": 124
|
222 |
-
},
|
223 |
-
{
|
224 |
-
"epoch": 3.01,
|
225 |
-
"learning_rate": 8.73846153846154e-06,
|
226 |
-
"loss": 0.2734,
|
227 |
-
"step": 128
|
228 |
-
},
|
229 |
-
{
|
230 |
-
"epoch": 3.02,
|
231 |
-
"learning_rate": 8.615384615384617e-06,
|
232 |
-
"loss": 0.2608,
|
233 |
-
"step": 132
|
234 |
-
},
|
235 |
-
{
|
236 |
-
"epoch": 3.03,
|
237 |
-
"learning_rate": 8.492307692307693e-06,
|
238 |
-
"loss": 0.2509,
|
239 |
-
"step": 136
|
240 |
-
},
|
241 |
-
{
|
242 |
-
"epoch": 3.04,
|
243 |
-
"learning_rate": 8.36923076923077e-06,
|
244 |
-
"loss": 0.2548,
|
245 |
-
"step": 140
|
246 |
-
},
|
247 |
-
{
|
248 |
-
"epoch": 3.05,
|
249 |
-
"learning_rate": 8.246153846153848e-06,
|
250 |
-
"loss": 0.2469,
|
251 |
-
"step": 144
|
252 |
-
},
|
253 |
-
{
|
254 |
-
"epoch": 3.06,
|
255 |
-
"learning_rate": 8.123076923076924e-06,
|
256 |
-
"loss": 0.2231,
|
257 |
-
"step": 148
|
258 |
-
},
|
259 |
-
{
|
260 |
-
"epoch": 3.07,
|
261 |
-
"learning_rate": 8.000000000000001e-06,
|
262 |
-
"loss": 0.2138,
|
263 |
-
"step": 152
|
264 |
-
},
|
265 |
-
{
|
266 |
-
"epoch": 3.08,
|
267 |
-
"learning_rate": 7.876923076923077e-06,
|
268 |
-
"loss": 0.2349,
|
269 |
-
"step": 156
|
270 |
-
},
|
271 |
-
{
|
272 |
-
"epoch": 3.09,
|
273 |
-
"learning_rate": 7.753846153846155e-06,
|
274 |
-
"loss": 0.2077,
|
275 |
-
"step": 160
|
276 |
-
},
|
277 |
-
{
|
278 |
-
"epoch": 3.09,
|
279 |
-
"eval_loss": 0.5241798758506775,
|
280 |
-
"eval_runtime": 88.5317,
|
281 |
-
"eval_samples_per_second": 4.45,
|
282 |
-
"eval_steps_per_second": 0.147,
|
283 |
-
"eval_wer": 17.26197732536877,
|
284 |
-
"step": 160
|
285 |
-
},
|
286 |
-
{
|
287 |
-
"epoch": 3.1,
|
288 |
-
"learning_rate": 7.630769230769232e-06,
|
289 |
-
"loss": 0.2322,
|
290 |
-
"step": 164
|
291 |
-
},
|
292 |
-
{
|
293 |
-
"epoch": 4.01,
|
294 |
-
"learning_rate": 7.507692307692308e-06,
|
295 |
-
"loss": 0.2036,
|
296 |
-
"step": 168
|
297 |
-
},
|
298 |
-
{
|
299 |
-
"epoch": 4.02,
|
300 |
-
"learning_rate": 7.384615384615386e-06,
|
301 |
-
"loss": 0.2058,
|
302 |
-
"step": 172
|
303 |
-
},
|
304 |
-
{
|
305 |
-
"epoch": 4.03,
|
306 |
-
"learning_rate": 7.261538461538462e-06,
|
307 |
-
"loss": 0.1797,
|
308 |
-
"step": 176
|
309 |
-
},
|
310 |
-
{
|
311 |
-
"epoch": 4.04,
|
312 |
-
"learning_rate": 7.1384615384615385e-06,
|
313 |
-
"loss": 0.186,
|
314 |
-
"step": 180
|
315 |
-
},
|
316 |
-
{
|
317 |
-
"epoch": 4.05,
|
318 |
-
"learning_rate": 7.015384615384616e-06,
|
319 |
-
"loss": 0.2035,
|
320 |
-
"step": 184
|
321 |
-
},
|
322 |
-
{
|
323 |
-
"epoch": 4.06,
|
324 |
-
"learning_rate": 6.892307692307693e-06,
|
325 |
-
"loss": 0.1794,
|
326 |
-
"step": 188
|
327 |
-
},
|
328 |
-
{
|
329 |
-
"epoch": 4.07,
|
330 |
-
"learning_rate": 6.76923076923077e-06,
|
331 |
-
"loss": 0.1589,
|
332 |
-
"step": 192
|
333 |
-
},
|
334 |
-
{
|
335 |
-
"epoch": 4.08,
|
336 |
-
"learning_rate": 6.646153846153846e-06,
|
337 |
-
"loss": 0.1879,
|
338 |
-
"step": 196
|
339 |
-
},
|
340 |
-
{
|
341 |
-
"epoch": 4.09,
|
342 |
-
"learning_rate": 6.523076923076923e-06,
|
343 |
-
"loss": 0.1636,
|
344 |
-
"step": 200
|
345 |
-
},
|
346 |
-
{
|
347 |
-
"epoch": 4.09,
|
348 |
-
"eval_loss": 0.5289868712425232,
|
349 |
-
"eval_runtime": 95.5188,
|
350 |
-
"eval_samples_per_second": 4.125,
|
351 |
-
"eval_steps_per_second": 0.136,
|
352 |
-
"eval_wer": 17.66426916981592,
|
353 |
-
"step": 200
|
354 |
-
},
|
355 |
-
{
|
356 |
-
"epoch": 4.1,
|
357 |
-
"learning_rate": 6.4000000000000006e-06,
|
358 |
-
"loss": 0.1767,
|
359 |
-
"step": 204
|
360 |
-
},
|
361 |
-
{
|
362 |
-
"epoch": 5.01,
|
363 |
-
"learning_rate": 6.276923076923077e-06,
|
364 |
-
"loss": 0.1657,
|
365 |
-
"step": 208
|
366 |
-
},
|
367 |
-
{
|
368 |
-
"epoch": 5.02,
|
369 |
-
"learning_rate": 6.153846153846155e-06,
|
370 |
-
"loss": 0.1607,
|
371 |
-
"step": 212
|
372 |
-
},
|
373 |
-
{
|
374 |
-
"epoch": 5.03,
|
375 |
-
"learning_rate": 6.030769230769231e-06,
|
376 |
-
"loss": 0.1458,
|
377 |
-
"step": 216
|
378 |
-
},
|
379 |
-
{
|
380 |
-
"epoch": 5.04,
|
381 |
-
"learning_rate": 5.907692307692308e-06,
|
382 |
-
"loss": 0.1541,
|
383 |
-
"step": 220
|
384 |
-
},
|
385 |
-
{
|
386 |
-
"epoch": 5.05,
|
387 |
-
"learning_rate": 5.784615384615385e-06,
|
388 |
-
"loss": 0.1494,
|
389 |
-
"step": 224
|
390 |
-
},
|
391 |
-
{
|
392 |
-
"epoch": 5.06,
|
393 |
-
"learning_rate": 5.661538461538462e-06,
|
394 |
-
"loss": 0.144,
|
395 |
-
"step": 228
|
396 |
-
},
|
397 |
-
{
|
398 |
-
"epoch": 5.07,
|
399 |
-
"learning_rate": 5.538461538461539e-06,
|
400 |
-
"loss": 0.1311,
|
401 |
-
"step": 232
|
402 |
-
},
|
403 |
-
{
|
404 |
-
"epoch": 5.08,
|
405 |
-
"learning_rate": 5.415384615384615e-06,
|
406 |
-
"loss": 0.1411,
|
407 |
-
"step": 236
|
408 |
-
},
|
409 |
-
{
|
410 |
-
"epoch": 5.09,
|
411 |
-
"learning_rate": 5.292307692307693e-06,
|
412 |
-
"loss": 0.1322,
|
413 |
-
"step": 240
|
414 |
-
},
|
415 |
-
{
|
416 |
-
"epoch": 5.09,
|
417 |
-
"eval_loss": 0.5350630283355713,
|
418 |
-
"eval_runtime": 92.5111,
|
419 |
-
"eval_samples_per_second": 4.259,
|
420 |
-
"eval_steps_per_second": 0.141,
|
421 |
-
"eval_wer": 18.2128489576984,
|
422 |
-
"step": 240
|
423 |
-
},
|
424 |
-
{
|
425 |
-
"epoch": 5.1,
|
426 |
-
"learning_rate": 5.16923076923077e-06,
|
427 |
-
"loss": 0.1436,
|
428 |
-
"step": 244
|
429 |
-
},
|
430 |
-
{
|
431 |
-
"epoch": 6.0,
|
432 |
-
"learning_rate": 5.046153846153846e-06,
|
433 |
-
"loss": 0.1375,
|
434 |
-
"step": 248
|
435 |
-
},
|
436 |
-
{
|
437 |
-
"epoch": 6.01,
|
438 |
-
"learning_rate": 4.923076923076924e-06,
|
439 |
-
"loss": 0.1361,
|
440 |
-
"step": 252
|
441 |
-
},
|
442 |
-
{
|
443 |
-
"epoch": 6.02,
|
444 |
-
"learning_rate": 4.800000000000001e-06,
|
445 |
-
"loss": 0.129,
|
446 |
-
"step": 256
|
447 |
-
},
|
448 |
-
{
|
449 |
-
"epoch": 6.03,
|
450 |
-
"learning_rate": 4.676923076923077e-06,
|
451 |
-
"loss": 0.1127,
|
452 |
-
"step": 260
|
453 |
-
},
|
454 |
-
{
|
455 |
-
"epoch": 6.04,
|
456 |
-
"learning_rate": 4.553846153846154e-06,
|
457 |
-
"loss": 0.1266,
|
458 |
-
"step": 264
|
459 |
-
},
|
460 |
-
{
|
461 |
-
"epoch": 6.05,
|
462 |
-
"learning_rate": 4.430769230769232e-06,
|
463 |
-
"loss": 0.1193,
|
464 |
-
"step": 268
|
465 |
-
},
|
466 |
-
{
|
467 |
-
"epoch": 6.06,
|
468 |
-
"learning_rate": 4.307692307692308e-06,
|
469 |
-
"loss": 0.1127,
|
470 |
-
"step": 272
|
471 |
-
},
|
472 |
-
{
|
473 |
-
"epoch": 6.07,
|
474 |
-
"learning_rate": 4.184615384615385e-06,
|
475 |
-
"loss": 0.1064,
|
476 |
-
"step": 276
|
477 |
-
},
|
478 |
-
{
|
479 |
-
"epoch": 6.08,
|
480 |
-
"learning_rate": 4.061538461538462e-06,
|
481 |
-
"loss": 0.123,
|
482 |
-
"step": 280
|
483 |
-
},
|
484 |
-
{
|
485 |
-
"epoch": 6.08,
|
486 |
-
"eval_loss": 0.5429388284683228,
|
487 |
-
"eval_runtime": 91.5818,
|
488 |
-
"eval_samples_per_second": 4.302,
|
489 |
-
"eval_steps_per_second": 0.142,
|
490 |
-
"eval_wer": 18.907716689016212,
|
491 |
-
"step": 280
|
492 |
-
},
|
493 |
-
{
|
494 |
-
"epoch": 6.09,
|
495 |
-
"learning_rate": 3.938461538461539e-06,
|
496 |
-
"loss": 0.1057,
|
497 |
-
"step": 284
|
498 |
-
},
|
499 |
-
{
|
500 |
-
"epoch": 7.0,
|
501 |
-
"learning_rate": 3.815384615384616e-06,
|
502 |
-
"loss": 0.1258,
|
503 |
-
"step": 288
|
504 |
-
},
|
505 |
-
{
|
506 |
-
"epoch": 7.01,
|
507 |
-
"learning_rate": 3.692307692307693e-06,
|
508 |
-
"loss": 0.1108,
|
509 |
-
"step": 292
|
510 |
-
},
|
511 |
-
{
|
512 |
-
"epoch": 7.02,
|
513 |
-
"learning_rate": 3.5692307692307692e-06,
|
514 |
-
"loss": 0.1115,
|
515 |
-
"step": 296
|
516 |
-
},
|
517 |
-
{
|
518 |
-
"epoch": 7.03,
|
519 |
-
"learning_rate": 3.4461538461538464e-06,
|
520 |
-
"loss": 0.0998,
|
521 |
-
"step": 300
|
522 |
-
},
|
523 |
-
{
|
524 |
-
"epoch": 7.04,
|
525 |
-
"learning_rate": 3.323076923076923e-06,
|
526 |
-
"loss": 0.1106,
|
527 |
-
"step": 304
|
528 |
-
},
|
529 |
-
{
|
530 |
-
"epoch": 7.05,
|
531 |
-
"learning_rate": 3.2000000000000003e-06,
|
532 |
-
"loss": 0.1045,
|
533 |
-
"step": 308
|
534 |
-
},
|
535 |
-
{
|
536 |
-
"epoch": 7.06,
|
537 |
-
"learning_rate": 3.0769230769230774e-06,
|
538 |
-
"loss": 0.0908,
|
539 |
-
"step": 312
|
540 |
-
},
|
541 |
-
{
|
542 |
-
"epoch": 7.07,
|
543 |
-
"learning_rate": 2.953846153846154e-06,
|
544 |
-
"loss": 0.0931,
|
545 |
-
"step": 316
|
546 |
-
},
|
547 |
-
{
|
548 |
-
"epoch": 7.08,
|
549 |
-
"learning_rate": 2.830769230769231e-06,
|
550 |
-
"loss": 0.1074,
|
551 |
-
"step": 320
|
552 |
-
},
|
553 |
-
{
|
554 |
-
"epoch": 7.08,
|
555 |
-
"eval_loss": 0.5500437021255493,
|
556 |
-
"eval_runtime": 104.0907,
|
557 |
-
"eval_samples_per_second": 3.785,
|
558 |
-
"eval_steps_per_second": 0.125,
|
559 |
-
"eval_wer": 19.054004632451544,
|
560 |
-
"step": 320
|
561 |
-
},
|
562 |
-
{
|
563 |
-
"epoch": 7.09,
|
564 |
-
"learning_rate": 2.7076923076923076e-06,
|
565 |
-
"loss": 0.0937,
|
566 |
-
"step": 324
|
567 |
-
},
|
568 |
-
{
|
569 |
-
"epoch": 7.1,
|
570 |
-
"learning_rate": 2.584615384615385e-06,
|
571 |
-
"loss": 0.1091,
|
572 |
-
"step": 328
|
573 |
-
},
|
574 |
-
{
|
575 |
-
"epoch": 8.01,
|
576 |
-
"learning_rate": 2.461538461538462e-06,
|
577 |
-
"loss": 0.0951,
|
578 |
-
"step": 332
|
579 |
-
},
|
580 |
-
{
|
581 |
-
"epoch": 8.02,
|
582 |
-
"learning_rate": 2.3384615384615387e-06,
|
583 |
-
"loss": 0.1003,
|
584 |
-
"step": 336
|
585 |
-
},
|
586 |
-
{
|
587 |
-
"epoch": 8.03,
|
588 |
-
"learning_rate": 2.215384615384616e-06,
|
589 |
-
"loss": 0.0836,
|
590 |
-
"step": 340
|
591 |
-
},
|
592 |
-
{
|
593 |
-
"epoch": 8.04,
|
594 |
-
"learning_rate": 2.0923076923076926e-06,
|
595 |
-
"loss": 0.0907,
|
596 |
-
"step": 344
|
597 |
-
},
|
598 |
-
{
|
599 |
-
"epoch": 8.05,
|
600 |
-
"learning_rate": 1.9692307692307693e-06,
|
601 |
-
"loss": 0.1013,
|
602 |
-
"step": 348
|
603 |
-
},
|
604 |
-
{
|
605 |
-
"epoch": 8.06,
|
606 |
-
"learning_rate": 1.8461538461538465e-06,
|
607 |
-
"loss": 0.0891,
|
608 |
-
"step": 352
|
609 |
-
},
|
610 |
-
{
|
611 |
-
"epoch": 8.07,
|
612 |
-
"learning_rate": 1.7230769230769232e-06,
|
613 |
-
"loss": 0.077,
|
614 |
-
"step": 356
|
615 |
-
},
|
616 |
-
{
|
617 |
-
"epoch": 8.08,
|
618 |
-
"learning_rate": 1.6000000000000001e-06,
|
619 |
-
"loss": 0.1007,
|
620 |
-
"step": 360
|
621 |
-
},
|
622 |
-
{
|
623 |
-
"epoch": 8.08,
|
624 |
-
"eval_loss": 0.5552565455436707,
|
625 |
-
"eval_runtime": 88.458,
|
626 |
-
"eval_samples_per_second": 4.454,
|
627 |
-
"eval_steps_per_second": 0.147,
|
628 |
-
"eval_wer": 19.310008533463368,
|
629 |
-
"step": 360
|
630 |
-
},
|
631 |
-
{
|
632 |
-
"epoch": 8.09,
|
633 |
-
"learning_rate": 1.476923076923077e-06,
|
634 |
-
"loss": 0.0849,
|
635 |
-
"step": 364
|
636 |
-
},
|
637 |
-
{
|
638 |
-
"epoch": 8.1,
|
639 |
-
"learning_rate": 1.3538461538461538e-06,
|
640 |
-
"loss": 0.0971,
|
641 |
-
"step": 368
|
642 |
-
},
|
643 |
-
{
|
644 |
-
"epoch": 9.01,
|
645 |
-
"learning_rate": 1.230769230769231e-06,
|
646 |
-
"loss": 0.0876,
|
647 |
-
"step": 372
|
648 |
-
},
|
649 |
-
{
|
650 |
-
"epoch": 9.02,
|
651 |
-
"learning_rate": 1.107692307692308e-06,
|
652 |
-
"loss": 0.0879,
|
653 |
-
"step": 376
|
654 |
-
},
|
655 |
-
{
|
656 |
-
"epoch": 9.03,
|
657 |
-
"learning_rate": 9.846153846153847e-07,
|
658 |
-
"loss": 0.0805,
|
659 |
-
"step": 380
|
660 |
-
},
|
661 |
-
{
|
662 |
-
"epoch": 9.04,
|
663 |
-
"learning_rate": 8.615384615384616e-07,
|
664 |
-
"loss": 0.0888,
|
665 |
-
"step": 384
|
666 |
-
},
|
667 |
-
{
|
668 |
-
"epoch": 9.05,
|
669 |
-
"learning_rate": 7.384615384615385e-07,
|
670 |
-
"loss": 0.0858,
|
671 |
-
"step": 388
|
672 |
-
},
|
673 |
-
{
|
674 |
-
"epoch": 9.06,
|
675 |
-
"learning_rate": 6.153846153846155e-07,
|
676 |
-
"loss": 0.0825,
|
677 |
-
"step": 392
|
678 |
-
},
|
679 |
-
{
|
680 |
-
"epoch": 9.07,
|
681 |
-
"learning_rate": 4.923076923076923e-07,
|
682 |
-
"loss": 0.0748,
|
683 |
-
"step": 396
|
684 |
-
},
|
685 |
-
{
|
686 |
-
"epoch": 9.08,
|
687 |
-
"learning_rate": 3.6923076923076927e-07,
|
688 |
-
"loss": 0.0876,
|
689 |
-
"step": 400
|
690 |
-
},
|
691 |
-
{
|
692 |
-
"epoch": 9.08,
|
693 |
-
"eval_loss": 0.5568162202835083,
|
694 |
-
"eval_runtime": 89.7223,
|
695 |
-
"eval_samples_per_second": 4.391,
|
696 |
-
"eval_steps_per_second": 0.145,
|
697 |
-
"eval_wer": 19.3465805193222,
|
698 |
-
"step": 400
|
699 |
-
},
|
700 |
-
{
|
701 |
-
"epoch": 9.09,
|
702 |
-
"learning_rate": 2.4615384615384616e-07,
|
703 |
-
"loss": 0.0802,
|
704 |
-
"step": 404
|
705 |
-
},
|
706 |
-
{
|
707 |
-
"epoch": 9.09,
|
708 |
-
"step": 407,
|
709 |
-
"total_flos": 6.36398180352e+17,
|
710 |
-
"train_loss": 0.35074408769753995,
|
711 |
-
"train_runtime": 2707.3827,
|
712 |
-
"train_samples_per_second": 9.621,
|
713 |
-
"train_steps_per_second": 0.15
|
714 |
}
|
715 |
],
|
716 |
-
"max_steps":
|
717 |
"num_train_epochs": 9223372036854775807,
|
718 |
-
"total_flos":
|
719 |
"trial_name": null,
|
720 |
"trial_params": null
|
721 |
}
|
|
|
1 |
{
|
2 |
+
"best_metric": 153.2258064516129,
|
3 |
+
"best_model_checkpoint": "./checkpoint-1",
|
4 |
+
"epoch": 1.0,
|
5 |
+
"global_step": 2,
|
6 |
"is_hyper_param_search": false,
|
7 |
"is_local_process_zero": true,
|
8 |
"is_world_process_zero": true,
|
9 |
"log_history": [
|
10 |
{
|
11 |
+
"epoch": 0.5,
|
12 |
"learning_rate": 0.0,
|
13 |
+
"loss": 1.565,
|
14 |
+
"step": 1
|
15 |
},
|
16 |
{
|
17 |
+
"epoch": 0.5,
|
18 |
+
"eval_loss": 1.6191972494125366,
|
19 |
+
"eval_runtime": 41.7522,
|
20 |
+
"eval_samples_per_second": 0.096,
|
21 |
+
"eval_steps_per_second": 0.048,
|
22 |
+
"eval_wer": 153.2258064516129,
|
23 |
+
"step": 1
|
24 |
},
|
25 |
{
|
26 |
+
"epoch": 1.0,
|
27 |
+
"learning_rate": 1e-05,
|
28 |
+
"loss": 1.3028,
|
29 |
+
"step": 2
|
30 |
},
|
31 |
{
|
32 |
+
"epoch": 1.0,
|
33 |
+
"eval_loss": 1.6191972494125366,
|
34 |
+
"eval_runtime": 37.2469,
|
35 |
+
"eval_samples_per_second": 0.107,
|
36 |
+
"eval_steps_per_second": 0.054,
|
37 |
+
"eval_wer": 153.2258064516129,
|
38 |
+
"step": 2
|
39 |
},
|
40 |
{
|
41 |
+
"epoch": 1.0,
|
42 |
+
"step": 2,
|
43 |
+
"total_flos": 196951080960000.0,
|
44 |
+
"train_loss": 1.4339025020599365,
|
45 |
+
"train_runtime": 108.1566,
|
46 |
+
"train_samples_per_second": 0.074,
|
47 |
+
"train_steps_per_second": 0.018
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
}
|
49 |
],
|
50 |
+
"max_steps": 2,
|
51 |
"num_train_epochs": 9223372036854775807,
|
52 |
+
"total_flos": 196951080960000.0,
|
53 |
"trial_name": null,
|
54 |
"trial_params": null
|
55 |
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3579
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:081bb11364a81f07b31bca0107ccb5d62d955d95e115f206089558cf85595e34
|
3 |
size 3579
|