--- license: apache-2.0 tags: - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: whisper-training-blog results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: fleurs config: sv_se split: validation args: sv_se metrics: - name: Wer type: wer value: 180.05748044068338 --- # whisper-training-blog This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 1.0050 - Wer: 180.0575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - training_steps: 448 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4112 | 0.1 | 44 | 1.4919 | 245.3457 | | 1.0502 | 0.2 | 88 | 1.2255 | 220.1501 | | 0.9033 | 0.29 | 132 | 1.1203 | 206.2430 | | 0.8141 | 1.06 | 176 | 1.0675 | 201.9639 | | 0.8029 | 1.16 | 220 | 1.0394 | 178.3650 | | 0.6324 | 1.25 | 264 | 1.0301 | 221.2997 | | 0.6972 | 2.02 | 308 | 1.0134 | 176.6725 | | 0.6052 | 2.12 | 352 | 1.0065 | 194.7150 | | 0.6047 | 2.21 | 396 | 1.0030 | 160.9133 | | 0.5849 | 2.31 | 440 | 1.0050 | 180.0575 | ### Framework versions - Transformers 4.27.3 - Pytorch 2.0.0+cu118 - Datasets 2.10.1 - Tokenizers 0.13.3