File size: 3,586 Bytes
d84f4ed ef3cdad 61752de d84f4ed ef3cdad d84f4ed f165be0 d84f4ed 3042312 d84f4ed f165be0 d4f5dc4 f165be0 d4f5dc4 f165be0 6cffcf0 f165be0 6cffcf0 f165be0 d4f5dc4 6cffcf0 f165be0 d4f5dc4 6cffcf0 d84f4ed 3042312 d84f4ed 55a2553 628520f d84f4ed 074846f 628520f d84f4ed 3042312 d84f4ed 55a2553 3042312 d84f4ed 628520f d84f4ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
---
language:
- sv-SE
license: cc0-1.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- sv
- robust-speech-event
- model_for_talk
datasets:
- common_voice
model-index:
- name: XLS-R-300M - Swedish
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_8_0
type: mozilla-foundation/common_voice_8_0
args: sv-SE
metrics:
- name: Test WER
type: wer
value: 8.72
- name: Test CER
type: cer
value: 3.05
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: speech-recognition-community-v2/eval_data
type: speech-recognition-community-v2/eval_data
args: sv
metrics:
- name: Validation WER
type: wer
value: 19.67
- name: Validation CER
type: cer
value: 8.94
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: speech-recognition-community-v2/eval_data
type: speech-recognition-community-v2/eval_data
args: sv
metrics:
- name: Test WER
type: wer
value: 15.94
- name: Test CER
type: cer
value: 7.71
---
#
This model is a fine-tuned version of [KBLab/wav2vec2-large-voxrex](https://huggingface.co/KBLab/wav2vec2-large-voxrex) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SV-SE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1595
- Wer: 0.1200
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.25
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.0418 | 5.49 | 500 | 3.0176 | 1.0 |
| 1.1819 | 10.98 | 1000 | 0.2562 | 0.2168 |
| 1.0032 | 16.48 | 1500 | 0.1746 | 0.1546 |
| 0.9077 | 21.97 | 2000 | 0.1600 | 0.1339 |
| 0.8687 | 27.47 | 2500 | 0.1647 | 0.1378 |
| 0.8081 | 32.96 | 3000 | 0.1608 | 0.1353 |
| 0.7923 | 38.46 | 3500 | 0.1534 | 0.1277 |
| 0.7349 | 43.95 | 4000 | 0.1546 | 0.1303 |
| 0.7199 | 49.45 | 4500 | 0.1617 | 0.1277 |
| 0.7028 | 54.94 | 5000 | 0.1572 | 0.1287 |
| 0.6912 | 60.44 | 5500 | 0.1560 | 0.1249 |
| 0.6492 | 65.93 | 6000 | 0.1542 | 0.1260 |
| 0.6407 | 71.43 | 6500 | 0.1605 | 0.1240 |
| 0.6222 | 76.92 | 7000 | 0.1577 | 0.1219 |
| 0.6039 | 82.42 | 7500 | 0.1645 | 0.1249 |
| 0.5928 | 87.91 | 8000 | 0.1590 | 0.1214 |
| 0.6022 | 93.4 | 8500 | 0.1597 | 0.1213 |
| 0.5814 | 98.9 | 9000 | 0.1599 | 0.1199 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
|