File size: 3,601 Bytes
d84f4ed
 
074846f
 
d84f4ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
074846f
d84f4ed
fbfdfe3
 
d84f4ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
074846f
 
d84f4ed
 
074846f
 
d84f4ed
 
fbfdfe3
 
d84f4ed
 
 
 
fbfdfe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d84f4ed
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SV-SE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3179
- Wer: 0.2735

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.3332        | 1.45  | 500   | 3.2920          | 1.0    |
| 2.9269        | 2.91  | 1000  | 2.9415          | 0.9966 |
| 2.0719        | 4.36  | 1500  | 1.1641          | 0.8508 |
| 1.7404        | 5.81  | 2000  | 0.7281          | 0.6846 |
| 1.5921        | 7.27  | 2500  | 0.5886          | 0.5147 |
| 1.4941        | 8.72  | 3000  | 0.5183          | 0.5063 |
| 1.4486        | 10.17 | 3500  | 0.4749          | 0.4676 |
| 1.3899        | 11.63 | 4000  | 0.4565          | 0.4432 |
| 1.3881        | 13.08 | 4500  | 0.4316          | 0.4228 |
| 1.3572        | 14.53 | 5000  | 0.4195          | 0.3834 |
| 1.3261        | 15.99 | 5500  | 0.3974          | 0.3607 |
| 1.2809        | 17.44 | 6000  | 0.3845          | 0.3467 |
| 1.2713        | 18.89 | 6500  | 0.3832          | 0.3450 |
| 1.257         | 20.35 | 7000  | 0.3779          | 0.3373 |
| 1.2298        | 21.8  | 7500  | 0.3744          | 0.3391 |
| 1.2173        | 23.26 | 8000  | 0.3745          | 0.3262 |
| 1.1966        | 24.71 | 8500  | 0.3680          | 0.3241 |
| 1.1925        | 26.16 | 9000  | 0.3605          | 0.3171 |
| 1.1692        | 27.61 | 9500  | 0.3512          | 0.3147 |
| 1.1704        | 29.07 | 10000 | 0.3532          | 0.3098 |
| 1.1595        | 30.52 | 10500 | 0.3425          | 0.3039 |
| 1.1433        | 31.97 | 11000 | 0.3568          | 0.3026 |
| 1.1295        | 33.43 | 11500 | 0.3461          | 0.2992 |
| 1.1131        | 34.88 | 12000 | 0.3349          | 0.2942 |
| 1.1015        | 36.34 | 12500 | 0.3378          | 0.2961 |
| 1.0835        | 37.79 | 13000 | 0.3282          | 0.2865 |
| 1.083         | 39.24 | 13500 | 0.3182          | 0.2826 |
| 1.0819        | 40.7  | 14000 | 0.3264          | 0.2850 |
| 1.072         | 42.15 | 14500 | 0.3279          | 0.2817 |
| 1.0456        | 43.6  | 15000 | 0.3234          | 0.2793 |
| 1.0581        | 45.06 | 15500 | 0.3220          | 0.2779 |
| 1.0406        | 46.51 | 16000 | 0.3208          | 0.2762 |
| 1.0422        | 47.96 | 16500 | 0.3184          | 0.2752 |
| 1.0099        | 49.42 | 17000 | 0.3181          | 0.2735 |


### Framework versions

- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0