File size: 12,931 Bytes
1ce325b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
#include "binary_format.hh"
#include "lm_exception.hh"
#include "../util/file.hh"
#include "../util/file_piece.hh"
#include <cstddef>
#include <cstring>
#include <limits>
#include <string>
#include <cstdlib>
#include <stdint.h>
namespace lm {
namespace ngram {
const char *kModelNames[6] = {"probing hash tables", "probing hash tables with rest costs", "trie", "trie with quantization", "trie with array-compressed pointers", "trie with quantization and array-compressed pointers"};
namespace {
const char kMagicBeforeVersion[] = "mmap lm http://kheafield.com/code format version";
const char kMagicBytes[] = "mmap lm http://kheafield.com/code format version 5\n\0";
// This must be shorter than kMagicBytes and indicates an incomplete binary file (i.e. build failed).
const char kMagicIncomplete[] = "mmap lm http://kheafield.com/code incomplete\n";
const long int kMagicVersion = 5;
// Old binary files built on 32-bit machines have this header.
// TODO: eliminate with next binary release.
struct OldSanity {
char magic[sizeof(kMagicBytes)];
float zero_f, one_f, minus_half_f;
WordIndex one_word_index, max_word_index;
uint64_t one_uint64;
void SetToReference() {
std::memset(this, 0, sizeof(OldSanity));
std::memcpy(magic, kMagicBytes, sizeof(magic));
zero_f = 0.0; one_f = 1.0; minus_half_f = -0.5;
one_word_index = 1;
max_word_index = std::numeric_limits<WordIndex>::max();
one_uint64 = 1;
}
};
// Test values aligned to 8 bytes.
struct Sanity {
char magic[ALIGN8(sizeof(kMagicBytes))];
float zero_f, one_f, minus_half_f;
WordIndex one_word_index, max_word_index, padding_to_8;
uint64_t one_uint64;
void SetToReference() {
std::memset(this, 0, sizeof(Sanity));
std::memcpy(magic, kMagicBytes, sizeof(kMagicBytes));
zero_f = 0.0; one_f = 1.0; minus_half_f = -0.5;
one_word_index = 1;
max_word_index = std::numeric_limits<WordIndex>::max();
padding_to_8 = 0;
one_uint64 = 1;
}
};
std::size_t TotalHeaderSize(unsigned char order) {
return ALIGN8(sizeof(Sanity) + sizeof(FixedWidthParameters) + sizeof(uint64_t) * order);
}
void WriteHeader(void *to, const Parameters ¶ms) {
Sanity header = Sanity();
header.SetToReference();
std::memcpy(to, &header, sizeof(Sanity));
char *out = reinterpret_cast<char*>(to) + sizeof(Sanity);
*reinterpret_cast<FixedWidthParameters*>(out) = params.fixed;
out += sizeof(FixedWidthParameters);
uint64_t *counts = reinterpret_cast<uint64_t*>(out);
for (std::size_t i = 0; i < params.counts.size(); ++i) {
counts[i] = params.counts[i];
}
}
} // namespace
bool IsBinaryFormat(int fd) {
const uint64_t size = util::SizeFile(fd);
if (size == util::kBadSize || (size <= static_cast<uint64_t>(sizeof(Sanity)))) return false;
// Try reading the header.
util::scoped_memory memory;
try {
util::MapRead(util::LAZY, fd, 0, sizeof(Sanity), memory);
} catch (const util::Exception &e) {
return false;
}
Sanity reference_header = Sanity();
reference_header.SetToReference();
if (!std::memcmp(memory.get(), &reference_header, sizeof(Sanity))) return true;
if (!std::memcmp(memory.get(), kMagicIncomplete, strlen(kMagicIncomplete))) {
UTIL_THROW(FormatLoadException, "This binary file did not finish building");
}
if (!std::memcmp(memory.get(), kMagicBeforeVersion, strlen(kMagicBeforeVersion))) {
char *end_ptr;
const char *begin_version = static_cast<const char*>(memory.get()) + strlen(kMagicBeforeVersion);
long int version = std::strtol(begin_version, &end_ptr, 10);
if ((end_ptr != begin_version) && version != kMagicVersion) {
UTIL_THROW(FormatLoadException, "Binary file has version " << version << " but this implementation expects version " << kMagicVersion << " so you'll have to use the ARPA to rebuild your binary");
}
OldSanity old_sanity = OldSanity();
old_sanity.SetToReference();
UTIL_THROW_IF(!std::memcmp(memory.get(), &old_sanity, sizeof(OldSanity)), FormatLoadException, "Looks like this is an old 32-bit format. The old 32-bit format has been removed so that 64-bit and 32-bit files are exchangeable.");
UTIL_THROW(FormatLoadException, "File looks like it should be loaded with mmap, but the test values don't match. Try rebuilding the binary format LM using the same code revision, compiler, and architecture");
}
return false;
}
void ReadHeader(int fd, Parameters &out) {
util::SeekOrThrow(fd, sizeof(Sanity));
util::ReadOrThrow(fd, &out.fixed, sizeof(out.fixed));
if (out.fixed.probing_multiplier < 1.0)
UTIL_THROW(FormatLoadException, "Binary format claims to have a probing multiplier of " << out.fixed.probing_multiplier << " which is < 1.0.");
out.counts.resize(static_cast<std::size_t>(out.fixed.order));
if (out.fixed.order) util::ReadOrThrow(fd, &*out.counts.begin(), sizeof(uint64_t) * out.fixed.order);
}
void MatchCheck(ModelType model_type, unsigned int search_version, const Parameters ¶ms) {
if (params.fixed.model_type != model_type) {
if (static_cast<unsigned int>(params.fixed.model_type) >= (sizeof(kModelNames) / sizeof(const char *)))
UTIL_THROW(FormatLoadException, "The binary file claims to be model type " << static_cast<unsigned int>(params.fixed.model_type) << " but this is not implemented for in this inference code.");
UTIL_THROW(FormatLoadException, "The binary file was built for " << kModelNames[params.fixed.model_type] << " but the inference code is trying to load " << kModelNames[model_type]);
}
UTIL_THROW_IF(search_version != params.fixed.search_version, FormatLoadException, "The binary file has " << kModelNames[params.fixed.model_type] << " version " << params.fixed.search_version << " but this code expects " << kModelNames[params.fixed.model_type] << " version " << search_version);
}
const std::size_t kInvalidSize = static_cast<std::size_t>(-1);
BinaryFormat::BinaryFormat(const Config &config)
: write_method_(config.write_method), write_mmap_(config.write_mmap), load_method_(config.load_method),
header_size_(kInvalidSize), vocab_size_(kInvalidSize), vocab_string_offset_(kInvalidOffset) {}
void BinaryFormat::InitializeBinary(int fd, ModelType model_type, unsigned int search_version, Parameters ¶ms) {
file_.reset(fd);
write_mmap_ = NULL; // Ignore write requests; this is already in binary format.
ReadHeader(fd, params);
MatchCheck(model_type, search_version, params);
header_size_ = TotalHeaderSize(params.counts.size());
}
void BinaryFormat::ReadForConfig(void *to, std::size_t amount, uint64_t offset_excluding_header) const {
assert(header_size_ != kInvalidSize);
util::ErsatzPRead(file_.get(), to, amount, offset_excluding_header + header_size_);
}
void *BinaryFormat::LoadBinary(std::size_t size) {
assert(header_size_ != kInvalidSize);
const uint64_t file_size = util::SizeFile(file_.get());
// The header is smaller than a page, so we have to map the whole header as well.
uint64_t total_map = static_cast<uint64_t>(header_size_) + static_cast<uint64_t>(size);
UTIL_THROW_IF(file_size != util::kBadSize && file_size < total_map, FormatLoadException, "Binary file has size " << file_size << " but the headers say it should be at least " << total_map);
util::MapRead(load_method_, file_.get(), 0, util::CheckOverflow(total_map), mapping_);
vocab_string_offset_ = total_map;
return reinterpret_cast<uint8_t*>(mapping_.get()) + header_size_;
}
void *BinaryFormat::SetupJustVocab(std::size_t memory_size, uint8_t order) {
vocab_size_ = memory_size;
if (!write_mmap_) {
header_size_ = 0;
util::HugeMalloc(memory_size, true, memory_vocab_);
return reinterpret_cast<uint8_t*>(memory_vocab_.get());
}
header_size_ = TotalHeaderSize(order);
std::size_t total = util::CheckOverflow(static_cast<uint64_t>(header_size_) + static_cast<uint64_t>(memory_size));
file_.reset(util::CreateOrThrow(write_mmap_));
// some gccs complain about uninitialized variables even though all enum values are covered.
void *vocab_base = NULL;
switch (write_method_) {
case Config::WRITE_MMAP:
mapping_.reset(util::MapZeroedWrite(file_.get(), total), total, util::scoped_memory::MMAP_ALLOCATED);
util::AdviseHugePages(vocab_base, total);
vocab_base = mapping_.get();
break;
case Config::WRITE_AFTER:
util::ResizeOrThrow(file_.get(), 0);
util::HugeMalloc(total, true, memory_vocab_);
vocab_base = memory_vocab_.get();
break;
}
strncpy(reinterpret_cast<char*>(vocab_base), kMagicIncomplete, header_size_);
return reinterpret_cast<uint8_t*>(vocab_base) + header_size_;
}
void *BinaryFormat::GrowForSearch(std::size_t memory_size, std::size_t vocab_pad, void *&vocab_base) {
assert(vocab_size_ != kInvalidSize);
vocab_pad_ = vocab_pad;
std::size_t new_size = header_size_ + vocab_size_ + vocab_pad_ + memory_size;
vocab_string_offset_ = new_size;
if (!write_mmap_ || write_method_ == Config::WRITE_AFTER) {
util::HugeMalloc(memory_size, true, memory_search_);
assert(header_size_ == 0 || write_mmap_);
vocab_base = reinterpret_cast<uint8_t*>(memory_vocab_.get()) + header_size_;
util::AdviseHugePages(memory_search_.get(), memory_size);
return reinterpret_cast<uint8_t*>(memory_search_.get());
}
assert(write_method_ == Config::WRITE_MMAP);
// Also known as total size without vocab words.
// Grow the file to accomodate the search, using zeros.
// According to man mmap, behavior is undefined when the file is resized
// underneath a mmap that is not a multiple of the page size. So to be
// safe, we'll unmap it and map it again.
mapping_.reset();
util::ResizeOrThrow(file_.get(), new_size);
void *ret;
MapFile(vocab_base, ret);
util::AdviseHugePages(ret, new_size);
return ret;
}
void BinaryFormat::WriteVocabWords(const std::string &buffer, void *&vocab_base, void *&search_base) {
// Checking Config's include_vocab is the responsibility of the caller.
assert(header_size_ != kInvalidSize && vocab_size_ != kInvalidSize);
if (!write_mmap_) {
// Unchanged base.
vocab_base = reinterpret_cast<uint8_t*>(memory_vocab_.get());
search_base = reinterpret_cast<uint8_t*>(memory_search_.get());
return;
}
if (write_method_ == Config::WRITE_MMAP) {
mapping_.reset();
}
util::SeekOrThrow(file_.get(), VocabStringReadingOffset());
util::WriteOrThrow(file_.get(), &buffer[0], buffer.size());
if (write_method_ == Config::WRITE_MMAP) {
MapFile(vocab_base, search_base);
} else {
vocab_base = reinterpret_cast<uint8_t*>(memory_vocab_.get()) + header_size_;
search_base = reinterpret_cast<uint8_t*>(memory_search_.get());
}
}
void BinaryFormat::FinishFile(const Config &config, ModelType model_type, unsigned int search_version, const std::vector<uint64_t> &counts) {
if (!write_mmap_) return;
switch (write_method_) {
case Config::WRITE_MMAP:
util::SyncOrThrow(mapping_.get(), mapping_.size());
break;
case Config::WRITE_AFTER:
util::SeekOrThrow(file_.get(), 0);
util::WriteOrThrow(file_.get(), memory_vocab_.get(), memory_vocab_.size());
util::SeekOrThrow(file_.get(), header_size_ + vocab_size_ + vocab_pad_);
util::WriteOrThrow(file_.get(), memory_search_.get(), memory_search_.size());
util::FSyncOrThrow(file_.get());
break;
}
// header and vocab share the same mmap.
Parameters params = Parameters();
memset(¶ms, 0, sizeof(Parameters));
params.counts = counts;
params.fixed.order = counts.size();
params.fixed.probing_multiplier = config.probing_multiplier;
params.fixed.model_type = model_type;
params.fixed.has_vocabulary = config.include_vocab;
params.fixed.search_version = search_version;
switch (write_method_) {
case Config::WRITE_MMAP:
WriteHeader(mapping_.get(), params);
util::SyncOrThrow(mapping_.get(), mapping_.size());
break;
case Config::WRITE_AFTER:
{
std::vector<uint8_t> buffer(TotalHeaderSize(counts.size()));
WriteHeader(&buffer[0], params);
util::SeekOrThrow(file_.get(), 0);
util::WriteOrThrow(file_.get(), &buffer[0], buffer.size());
}
break;
}
}
void BinaryFormat::MapFile(void *&vocab_base, void *&search_base) {
mapping_.reset(util::MapOrThrow(vocab_string_offset_, true, util::kFileFlags, false, file_.get()), vocab_string_offset_, util::scoped_memory::MMAP_ALLOCATED);
vocab_base = reinterpret_cast<uint8_t*>(mapping_.get()) + header_size_;
search_base = reinterpret_cast<uint8_t*>(mapping_.get()) + header_size_ + vocab_size_ + vocab_pad_;
}
bool RecognizeBinary(const char *file, ModelType &recognized) {
util::scoped_fd fd(util::OpenReadOrThrow(file));
if (!IsBinaryFormat(fd.get())) {
return false;
}
Parameters params;
ReadHeader(fd.get(), params);
recognized = params.fixed.model_type;
return true;
}
} // namespace ngram
} // namespace lm
|