File size: 10,010 Bytes
1ce325b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
#include "merge_probabilities.hh"
#include "../common/ngram_stream.hh"
#include "bounded_sequence_encoding.hh"
#include "interpolate_info.hh"
#include <algorithm>
#include <limits>
#include <numeric>
namespace lm {
namespace interpolate {
/**
* Helper to generate the BoundedSequenceEncoding used for writing the
* from values.
*/
BoundedSequenceEncoding MakeEncoder(const InterpolateInfo &info, uint8_t order) {
util::FixedArray<uint8_t> max_orders(info.orders.size());
for (std::size_t i = 0; i < info.orders.size(); ++i) {
max_orders.push_back(std::min(order, info.orders[i]));
}
return BoundedSequenceEncoding(max_orders.begin(), max_orders.end());
}
namespace {
/**
* A simple wrapper class that holds information needed to read and write
* the ngrams of a particular order. This class has the memory needed to
* buffer the data needed for the recursive process of computing the
* probabilities and "from" values for each component model.
*
* "From" values indicate, for each model, what order (as an index, so -1)
* was backed off to in order to arrive at a probability. For example, if a
* 5-gram model (order index 4) backed off twice, we would write a 2.
*/
class NGramHandler {
public:
NGramHandler(uint8_t order, const InterpolateInfo &ifo,
util::FixedArray<util::stream::ChainPositions> &models_by_order)
: info(ifo),
encoder(MakeEncoder(info, order)),
out_record(order, encoder.EncodedLength()) {
std::size_t count_has_order = 0;
for (std::size_t i = 0; i < models_by_order.size(); ++i) {
count_has_order += (models_by_order[i].size() >= order);
}
inputs_.Init(count_has_order);
for (std::size_t i = 0; i < models_by_order.size(); ++i) {
if (models_by_order[i].size() < order)
continue;
inputs_.push_back(models_by_order[i][order - 1]);
if (inputs_.back()) {
active_.resize(active_.size() + 1);
active_.back().model = i;
active_.back().stream = &inputs_.back();
}
}
// have to init outside since NGramStreams doesn't forward to
// GenericStreams ctor given a ChainPositions
probs.Init(info.Models());
from.Init(info.Models());
for (std::size_t i = 0; i < info.Models(); ++i) {
probs.push_back(0.0);
from.push_back(0);
}
}
struct StreamIndex {
NGramStream<ProbBackoff> *stream;
NGramStream<ProbBackoff> &Stream() { return *stream; }
std::size_t model;
};
std::size_t ActiveSize() const {
return active_.size();
}
/**
* @return the input stream for a particular model that corresponds to
* this ngram order
*/
StreamIndex &operator[](std::size_t idx) {
return active_[idx];
}
void erase(std::size_t idx) {
active_.erase(active_.begin() + idx);
}
const InterpolateInfo &info;
BoundedSequenceEncoding encoder;
PartialProbGamma out_record;
util::FixedArray<float> probs;
util::FixedArray<uint8_t> from;
private:
std::vector<StreamIndex> active_;
NGramStreams<ProbBackoff> inputs_;
};
/**
* A collection of NGramHandlers.
*/
class NGramHandlers : public util::FixedArray<NGramHandler> {
public:
explicit NGramHandlers(std::size_t num)
: util::FixedArray<NGramHandler>(num) {
}
void push_back(
std::size_t order, const InterpolateInfo &info,
util::FixedArray<util::stream::ChainPositions> &models_by_order) {
new (end()) NGramHandler(order, info, models_by_order);
Constructed();
}
};
/**
* The recursive helper function that computes probability and "from"
* values for all ngrams matching a particular suffix.
*
* The current order can be computed as the suffix length + 1. Note that
* the suffix could be empty (suffix_begin == suffix_end == NULL), in which
* case we are handling unigrams with the UNK token as the fallback
* probability.
*
* @param handlers The full collection of handlers
* @param suffix_begin A start iterator for the suffix
* @param suffix_end An end iterator for the suffix
* @param fallback_probs The probabilities of this ngram if we need to
* back off (that is, the probability of the suffix)
* @param fallback_from The order that the corresponding fallback
* probability in the fallback_probs is from
* @param combined_fallback interpolated fallback_probs
* @param outputs The output streams, one for each order
*/
void HandleSuffix(NGramHandlers &handlers, WordIndex *suffix_begin,
WordIndex *suffix_end,
const util::FixedArray<float> &fallback_probs,
const util::FixedArray<uint8_t> &fallback_from,
float combined_fallback,
util::stream::Streams &outputs) {
uint8_t order = std::distance(suffix_begin, suffix_end) + 1;
if (order > outputs.size()) return;
util::stream::Stream &output = outputs[order - 1];
NGramHandler &handler = handlers[order - 1];
while (true) {
// find the next smallest ngram which matches our suffix
// TODO: priority queue driven.
WordIndex *minimum = NULL;
for (std::size_t i = 0; i < handler.ActiveSize(); ++i) {
if (!std::equal(suffix_begin, suffix_end, handler[i].Stream()->begin() + 1))
continue;
// if we either haven't set a minimum yet or this one is smaller than
// the minimum we found before, replace it
WordIndex *last = handler[i].Stream()->begin();
if (!minimum || *last < *minimum) { minimum = handler[i].Stream()->begin(); }
}
// no more ngrams of this order match our suffix, so we're done
if (!minimum) return;
handler.out_record.ReBase(output.Get());
std::copy(minimum, minimum + order, handler.out_record.begin());
// Default case is having backed off.
std::copy(fallback_probs.begin(), fallback_probs.end(), handler.probs.begin());
std::copy(fallback_from.begin(), fallback_from.end(), handler.from.begin());
for (std::size_t i = 0; i < handler.ActiveSize();) {
if (std::equal(handler.out_record.begin(), handler.out_record.end(),
handler[i].Stream()->begin())) {
handler.probs[handler[i].model] = handler.info.lambdas[handler[i].model] * handler[i].Stream()->Value().prob;
handler.from[handler[i].model] = order - 1;
if (++handler[i].Stream()) {
++i;
} else {
handler.erase(i);
}
} else {
++i;
}
}
handler.out_record.Prob() = std::accumulate(handler.probs.begin(), handler.probs.end(), 0.0);
handler.out_record.LowerProb() = combined_fallback;
handler.encoder.Encode(handler.from.begin(),
handler.out_record.FromBegin());
// we've handled this particular ngram, so now recurse to the higher
// order using the current ngram as the suffix
HandleSuffix(handlers, handler.out_record.begin(), handler.out_record.end(),
handler.probs, handler.from, handler.out_record.Prob(), outputs);
// consume the output
++output;
}
}
/**
* Kicks off the recursion for computing the probabilities and "from"
* values for each ngram order. We begin by handling the UNK token that
* should be at the front of each of the unigram input streams. This is
* then output to the stream and it is used as the fallback for handling
* our unigram case, the unigram used as the fallback for the bigram case,
* etc.
*/
void HandleNGrams(NGramHandlers &handlers, util::stream::Streams &outputs) {
PartialProbGamma unk_record(1, 0);
// First: populate the unk probabilities by reading the first unigram
// from each stream
util::FixedArray<float> unk_probs(handlers[0].info.Models());
// start by populating the ngram id from the first stream
lm::NGram<ProbBackoff> ngram = *handlers[0][0].Stream();
unk_record.ReBase(outputs[0].Get());
std::copy(ngram.begin(), ngram.end(), unk_record.begin());
unk_record.Prob() = 0;
// then populate the probabilities into unk_probs while "multiply" the
// model probabilities together into the unk record
//
// note that from doesn't need to be set for unigrams
assert(handlers[0].ActiveSize() == handlers[0].info.Models());
for (std::size_t i = 0; i < handlers[0].info.Models();) {
ngram = *handlers[0][i].Stream();
unk_probs.push_back(handlers[0].info.lambdas[i] * ngram.Value().prob);
unk_record.Prob() += unk_probs[i];
assert(*ngram.begin() == kUNK);
if (++handlers[0][i].Stream()) {
++i;
} else {
handlers[0].erase(i);
}
}
float unk_combined = unk_record.Prob();
unk_record.LowerProb() = unk_combined;
// flush the unk output record
++outputs[0];
// Then, begin outputting everything in lexicographic order: first we'll
// get the unigram then the first bigram with that context, then the
// first trigram with that bigram context, etc., until we exhaust all of
// the ngrams, then all of the (n-1)grams, etc.
//
// This function is the "root" of this recursive process.
util::FixedArray<uint8_t> unk_from(handlers[0].info.Models());
for (std::size_t i = 0; i < handlers[0].info.Models(); ++i) {
unk_from.push_back(0);
}
// the two nulls are to encode that our "fallback" word is the "0-gram"
// case, e.g. we "backed off" to UNK
// TODO: stop generating vocab ids and LowerProb for unigrams.
HandleSuffix(handlers, NULL, NULL, unk_probs, unk_from, unk_combined, outputs);
// Verify we reached the end. And poison!
for (std::size_t i = 0; i < handlers.size(); ++i) {
UTIL_THROW_IF2(handlers[i].ActiveSize(),
"MergeProbabilities did not exhaust all ngram streams");
outputs[i].Poison();
}
}
} // namespace
void MergeProbabilities::Run(const util::stream::ChainPositions &output_pos) {
NGramHandlers handlers(output_pos.size());
for (std::size_t i = 0; i < output_pos.size(); ++i) {
handlers.push_back(i + 1, info_, models_by_order_);
}
util::stream::Streams outputs(output_pos);
HandleNGrams(handlers, outputs);
}
}} // namespaces
|