marinone94's picture
Training in progress, epoch 0
1ce325b
raw
history blame
5.3 kB
#include "../common/model_buffer.hh"
#include "../common/size_option.hh"
#include "pipeline.hh"
#include "tune_instances.hh"
#include "tune_weights.hh"
#include "../../util/fixed_array.hh"
#include "../../util/usage.hh"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas" // Older gcc doesn't have "-Wunused-local-typedefs" and complains.
#pragma GCC diagnostic ignored "-Wunused-local-typedefs"
#include <Eigen/Core>
#pragma GCC diagnostic pop
#include <boost/program_options.hpp>
#include <iostream>
#include <vector>
namespace {
void MungeWeightArgs(int argc, char *argv[], std::vector<const char *> &munged_args) {
// Boost program options doesn't -w 0.2 -0.1 because it thinks -0.1 is an
// option. There appears to be no standard way to fix this without breaking
// single-dash arguments. So here's a hack: put a -w before every number
// if it's within the scope of a weight argument.
munged_args.push_back(argv[0]);
char **inside_weights = NULL;
for (char **i = argv + 1; i < argv + argc; ++i) {
StringPiece arg(*i);
if (starts_with(arg, "-w") || starts_with(arg, "--w")) {
inside_weights = i;
} else if (inside_weights && arg.size() >= 2 && arg[0] == '-' && ((arg[1] >= '0' && arg[1] <= '9') || arg[1] == '.')) {
// If a negative number appears right after -w, don't add another -w.
// And do stay inside weights.
if (inside_weights + 1 != i) {
munged_args.push_back("-w");
}
} else if (starts_with(arg, "-")) {
inside_weights = NULL;
}
munged_args.push_back(*i);
}
}
} // namespace
int main(int argc, char *argv[]) {
try {
Eigen::initParallel();
lm::interpolate::Config pipe_config;
lm::interpolate::InstancesConfig instances_config;
std::vector<std::string> input_models;
std::string tuning_file;
namespace po = boost::program_options;
po::options_description options("Log-linear interpolation options");
options.add_options()
("help,h", po::bool_switch(), "Show this help message")
("model,m", po::value<std::vector<std::string> >(&input_models)->multitoken()->required(), "Models to interpolate, which must be in KenLM intermediate format. The intermediate format can be generated using the --intermediate argument to lmplz.")
("weight,w", po::value<std::vector<float> >(&pipe_config.lambdas)->multitoken(), "Interpolation weights")
("tuning,t", po::value<std::string>(&tuning_file), "File to tune on: a text file with one sentence per line")
("just_tune", po::bool_switch(), "Tune and print weights then quit")
("temp_prefix,T", po::value<std::string>(&pipe_config.sort.temp_prefix)->default_value("/tmp/lm"), "Temporary file prefix")
("memory,S", lm::SizeOption(pipe_config.sort.total_memory, util::GuessPhysicalMemory() ? "50%" : "1G"), "Sorting memory: this is a very rough guide")
("sort_block", lm::SizeOption(pipe_config.sort.buffer_size, "64M"), "Block size");
po::variables_map vm;
std::vector<const char *> munged_args;
MungeWeightArgs(argc, argv, munged_args);
po::store(po::parse_command_line((int)munged_args.size(), &*munged_args.begin(), options), vm);
if (argc == 1 || vm["help"].as<bool>()) {
std::cerr << "Interpolate multiple models\n" << options << std::endl;
return 1;
}
po::notify(vm);
instances_config.sort = pipe_config.sort;
instances_config.model_read_chain_mem = instances_config.sort.buffer_size;
instances_config.extension_write_chain_mem = instances_config.sort.total_memory;
instances_config.lazy_memory = instances_config.sort.total_memory;
if (pipe_config.lambdas.empty() && tuning_file.empty()) {
std::cerr << "Provide a tuning file with -t xor weights with -w." << std::endl;
return 1;
}
if (!pipe_config.lambdas.empty() && !tuning_file.empty()) {
std::cerr << "Provide weights xor a tuning file, not both." << std::endl;
return 1;
}
if (!tuning_file.empty()) {
// Tune weights
std::vector<StringPiece> model_names;
for (std::vector<std::string>::const_iterator i = input_models.begin(); i != input_models.end(); ++i) {
model_names.push_back(*i);
}
lm::interpolate::TuneWeights(util::OpenReadOrThrow(tuning_file.c_str()), model_names, instances_config, pipe_config.lambdas);
std::cerr << "Final weights:";
std::ostream &to = vm["just_tune"].as<bool>() ? std::cout : std::cerr;
for (std::vector<float>::const_iterator i = pipe_config.lambdas.begin(); i != pipe_config.lambdas.end(); ++i) {
to << ' ' << *i;
}
to << std::endl;
}
if (vm["just_tune"].as<bool>()) {
return 0;
}
if (pipe_config.lambdas.size() != input_models.size()) {
std::cerr << "Number of models (" << input_models.size() << ") should match the number of weights (" << pipe_config.lambdas.size() << ")." << std::endl;
return 1;
}
util::FixedArray<lm::ModelBuffer> models(input_models.size());
for (std::size_t i = 0; i < input_models.size(); ++i) {
models.push_back(input_models[i]);
}
lm::interpolate::Pipeline(models, pipe_config, 1);
} catch (const std::exception &e) {
std::cerr << e.what() <<std::endl;
return 1;
}
return 0;
}