marinone94's picture
Training in progress, epoch 0
1ce325b
raw
history blame
4.26 kB
#include "nplm.hh"
#include "../../util/exception.hh"
#include "../../util/file.hh"
#include <algorithm>
#include <cstring>
#include "neuralLM.h"
namespace lm {
namespace np {
Vocabulary::Vocabulary(const nplm::vocabulary &vocab)
: base::Vocabulary(vocab.lookup_word("<s>"), vocab.lookup_word("</s>"), vocab.lookup_word("<unk>")),
vocab_(vocab), null_word_(vocab.lookup_word("<null>")) {}
Vocabulary::~Vocabulary() {}
WordIndex Vocabulary::Index(const std::string &str) const {
return vocab_.lookup_word(str);
}
class Backend {
public:
Backend(const nplm::neuralLM &from, const std::size_t cache_size) : lm_(from), ngram_(from.get_order()) {
lm_.set_cache(cache_size);
}
nplm::neuralLM &LM() { return lm_; }
const nplm::neuralLM &LM() const { return lm_; }
Eigen::Matrix<int,Eigen::Dynamic,1> &staging_ngram() { return ngram_; }
double lookup_from_staging() { return lm_.lookup_ngram(ngram_); }
int order() const { return lm_.get_order(); }
private:
nplm::neuralLM lm_;
Eigen::Matrix<int,Eigen::Dynamic,1> ngram_;
};
bool Model::Recognize(const std::string &name) {
try {
util::scoped_fd file(util::OpenReadOrThrow(name.c_str()));
char magic_check[16];
util::ReadOrThrow(file.get(), magic_check, sizeof(magic_check));
const char nnlm_magic[] = "\\config\nversion ";
return !memcmp(magic_check, nnlm_magic, 16);
} catch (const util::Exception &) {
return false;
}
}
namespace {
nplm::neuralLM *LoadNPLM(const std::string &file) {
util::scoped_ptr<nplm::neuralLM> ret(new nplm::neuralLM());
ret->read(file);
return ret.release();
}
} // namespace
Model::Model(const std::string &file, std::size_t cache)
: base_instance_(LoadNPLM(file)), vocab_(base_instance_->get_vocabulary()), cache_size_(cache) {
UTIL_THROW_IF(base_instance_->get_order() > NPLM_MAX_ORDER, util::Exception, "This NPLM has order " << (unsigned int)base_instance_->get_order() << " but the KenLM wrapper was compiled with " << NPLM_MAX_ORDER << ". Change the defintion of NPLM_MAX_ORDER and recompile.");
// log10 compatible with backoff models.
base_instance_->set_log_base(10.0);
State begin_sentence, null_context;
std::fill(begin_sentence.words, begin_sentence.words + NPLM_MAX_ORDER - 1, base_instance_->lookup_word("<s>"));
null_word_ = base_instance_->lookup_word("<null>");
std::fill(null_context.words, null_context.words + NPLM_MAX_ORDER - 1, null_word_);
Init(begin_sentence, null_context, vocab_, base_instance_->get_order());
}
Model::~Model() {}
FullScoreReturn Model::FullScore(const State &from, const WordIndex new_word, State &out_state) const {
Backend *backend = backend_.get();
if (!backend) {
backend = new Backend(*base_instance_, cache_size_);
backend_.reset(backend);
}
// State is in natural word order.
FullScoreReturn ret;
for (int i = 0; i < backend->order() - 1; ++i) {
backend->staging_ngram()(i) = from.words[i];
}
backend->staging_ngram()(backend->order() - 1) = new_word;
ret.prob = backend->lookup_from_staging();
// Always say full order.
ret.ngram_length = backend->order();
// Shift everything down by one.
memcpy(out_state.words, from.words + 1, sizeof(WordIndex) * (backend->order() - 2));
out_state.words[backend->order() - 2] = new_word;
// Fill in trailing words with zeros so state comparison works.
memset(out_state.words + backend->order() - 1, 0, sizeof(WordIndex) * (NPLM_MAX_ORDER - backend->order()));
return ret;
}
// TODO: optimize with direct call?
FullScoreReturn Model::FullScoreForgotState(const WordIndex *context_rbegin, const WordIndex *context_rend, const WordIndex new_word, State &out_state) const {
// State is in natural word order. The API here specifies reverse order.
std::size_t state_length = std::min<std::size_t>(Order() - 1, context_rend - context_rbegin);
State state;
// Pad with null words.
for (lm::WordIndex *i = state.words; i < state.words + Order() - 1 - state_length; ++i) {
*i = null_word_;
}
// Put new words at the end.
std::reverse_copy(context_rbegin, context_rbegin + state_length, state.words + Order() - 1 - state_length);
return FullScore(state, new_word, out_state);
}
} // namespace np
} // namespace lm