|
#include "pipeline.hh" |
|
|
|
#include "../common/compare.hh" |
|
#include "../common/print.hh" |
|
#include "../common/renumber.hh" |
|
#include "../vocab.hh" |
|
#include "backoff_reunification.hh" |
|
#include "interpolate_info.hh" |
|
#include "merge_probabilities.hh" |
|
#include "merge_vocab.hh" |
|
#include "normalize.hh" |
|
#include "universal_vocab.hh" |
|
#include "../../util/stream/chain.hh" |
|
#include "../../util/stream/count_records.hh" |
|
#include "../../util/stream/io.hh" |
|
#include "../../util/stream/multi_stream.hh" |
|
#include "../../util/stream/sort.hh" |
|
#include "../../util/fixed_array.hh" |
|
|
|
namespace lm { namespace interpolate { namespace { |
|
|
|
|
|
void SetupInputs(std::size_t buffer_size, const UniversalVocab &vocab, util::FixedArray<ModelBuffer> &models, bool exclude_highest, util::FixedArray<util::stream::Chains> &chains, util::FixedArray<util::stream::ChainPositions> &positions) { |
|
chains.clear(); |
|
positions.clear(); |
|
|
|
util::stream::ChainConfig config(0, 2, buffer_size); |
|
for (std::size_t i = 0; i < models.size(); ++i) { |
|
chains.push_back(models[i].Order() - exclude_highest); |
|
for (std::size_t j = 0; j < models[i].Order() - exclude_highest; ++j) { |
|
config.entry_size = sizeof(WordIndex) * (j + 1) + sizeof(float) * 2; |
|
chains.back().push_back(config); |
|
} |
|
if (i == models.size() - 1) |
|
chains.back().back().ActivateProgress(); |
|
models[i].Source(chains.back()); |
|
for (std::size_t j = 0; j < models[i].Order() - exclude_highest; ++j) { |
|
chains[i][j] >> Renumber(vocab.Mapping(i), j + 1); |
|
} |
|
} |
|
for (std::size_t i = 0; i < chains.size(); ++i) { |
|
positions.push_back(chains[i]); |
|
} |
|
} |
|
|
|
template <class Compare> void SinkSort(const util::stream::SortConfig &config, util::stream::Chains &chains, util::stream::Sorts<Compare> &sorts) { |
|
for (std::size_t i = 0; i < chains.size(); ++i) { |
|
sorts.push_back(chains[i], config, Compare(i + 1)); |
|
} |
|
} |
|
|
|
template <class Compare> void SourceSort(util::stream::Chains &chains, util::stream::Sorts<Compare> &sorts) { |
|
|
|
for (std::size_t i = 0; i < sorts.size(); ++i) { |
|
sorts[i].Merge(sorts[i].DefaultLazy()); |
|
} |
|
for (std::size_t i = 0; i < sorts.size(); ++i) { |
|
sorts[i].Output(chains[i], sorts[i].DefaultLazy()); |
|
} |
|
} |
|
|
|
} |
|
|
|
void Pipeline(util::FixedArray<ModelBuffer> &models, const Config &config, int write_file) { |
|
|
|
InterpolateInfo info; |
|
info.lambdas = config.lambdas; |
|
std::vector<WordIndex> vocab_sizes; |
|
|
|
util::scoped_fd vocab_null(util::MakeTemp(config.sort.temp_prefix)); |
|
std::size_t max_order = 0; |
|
util::FixedArray<int> vocab_files(models.size()); |
|
for (ModelBuffer *i = models.begin(); i != models.end(); ++i) { |
|
info.orders.push_back(i->Order()); |
|
vocab_sizes.push_back(i->Counts()[0]); |
|
vocab_files.push_back(i->VocabFile()); |
|
max_order = std::max(max_order, i->Order()); |
|
} |
|
util::scoped_ptr<UniversalVocab> vocab(new UniversalVocab(vocab_sizes)); |
|
{ |
|
ngram::ImmediateWriteWordsWrapper writer(NULL, vocab_null.get(), 0); |
|
MergeVocab(vocab_files, *vocab, writer); |
|
} |
|
|
|
std::cerr << "Merging probabilities." << std::endl; |
|
|
|
util::FixedArray<util::stream::Chains> input_chains(models.size()); |
|
util::FixedArray<util::stream::ChainPositions> models_by_order(models.size()); |
|
SetupInputs(config.BufferSize(), *vocab, models, false, input_chains, models_by_order); |
|
|
|
util::stream::Chains merged_probs(max_order); |
|
for (std::size_t i = 0; i < max_order; ++i) { |
|
merged_probs.push_back(util::stream::ChainConfig(PartialProbGamma::TotalSize(info, i + 1), 2, config.BufferSize())); |
|
} |
|
merged_probs >> MergeProbabilities(info, models_by_order); |
|
std::vector<uint64_t> counts(max_order); |
|
for (std::size_t i = 0; i < max_order; ++i) { |
|
merged_probs[i] >> util::stream::CountRecords(&counts[i]); |
|
} |
|
for (util::stream::Chains *i = input_chains.begin(); i != input_chains.end(); ++i) { |
|
*i >> util::stream::kRecycle; |
|
} |
|
|
|
|
|
{ |
|
util::stream::Sorts<ContextOrder> sorts(merged_probs.size()); |
|
SinkSort(config.sort, merged_probs, sorts); |
|
merged_probs.Wait(true); |
|
for (util::stream::Chains *i = input_chains.begin(); i != input_chains.end(); ++i) { |
|
i->Wait(true); |
|
} |
|
SourceSort(merged_probs, sorts); |
|
} |
|
|
|
std::cerr << "Normalizing" << std::endl; |
|
SetupInputs(config.BufferSize(), *vocab, models, true, input_chains, models_by_order); |
|
util::stream::Chains probabilities(max_order), backoffs(max_order - 1); |
|
std::size_t block_count = 2; |
|
for (std::size_t i = 0; i < max_order; ++i) { |
|
|
|
block_count = std::max<std::size_t>(block_count, 2); |
|
|
|
std::size_t fit = NGram<float>::TotalSize(i + 1) * counts[0]; |
|
|
|
std::size_t min_block = (fit + block_count - 2) / (block_count - 1); |
|
std::size_t specify = std::max(config.BufferSize(), min_block * block_count); |
|
probabilities.push_back(util::stream::ChainConfig(NGram<float>::TotalSize(i + 1), block_count, specify)); |
|
} |
|
for (std::size_t i = 0; i < max_order - 1; ++i) { |
|
backoffs.push_back(util::stream::ChainConfig(sizeof(float), 2, config.BufferSize())); |
|
} |
|
Normalize(info, models_by_order, merged_probs, probabilities, backoffs); |
|
util::FixedArray<util::stream::FileBuffer> backoff_buffers(backoffs.size()); |
|
for (std::size_t i = 0; i < max_order - 1; ++i) { |
|
backoff_buffers.push_back(util::MakeTemp(config.sort.temp_prefix)); |
|
backoffs[i] >> backoff_buffers.back().Sink() >> util::stream::kRecycle; |
|
} |
|
for (util::stream::Chains *i = input_chains.begin(); i != input_chains.end(); ++i) { |
|
*i >> util::stream::kRecycle; |
|
} |
|
merged_probs >> util::stream::kRecycle; |
|
|
|
|
|
{ |
|
util::stream::Sorts<SuffixOrder> sorts(probabilities.size()); |
|
SinkSort(config.sort, probabilities, sorts); |
|
probabilities.Wait(true); |
|
for (util::stream::Chains *i = input_chains.begin(); i != input_chains.end(); ++i) { |
|
i->Wait(true); |
|
} |
|
backoffs.Wait(true); |
|
merged_probs.Wait(true); |
|
|
|
vocab.reset(); |
|
SourceSort(probabilities, sorts); |
|
} |
|
|
|
std::cerr << "Reunifying backoffs" << std::endl; |
|
util::stream::ChainPositions prob_pos(max_order - 1); |
|
util::stream::Chains combined(max_order - 1); |
|
for (std::size_t i = 0; i < max_order - 1; ++i) { |
|
if (i == max_order - 2) |
|
backoffs[i].ActivateProgress(); |
|
backoffs[i].SetProgressTarget(backoff_buffers[i].Size()); |
|
backoffs[i] >> backoff_buffers[i].Source(true); |
|
prob_pos.push_back(probabilities[i].Add()); |
|
combined.push_back(util::stream::ChainConfig(NGram<ProbBackoff>::TotalSize(i + 1), 2, config.BufferSize())); |
|
} |
|
util::stream::ChainPositions backoff_pos(backoffs); |
|
|
|
ReunifyBackoff(prob_pos, backoff_pos, combined); |
|
|
|
util::stream::ChainPositions output_pos(max_order); |
|
for (std::size_t i = 0; i < max_order - 1; ++i) { |
|
output_pos.push_back(combined[i].Add()); |
|
} |
|
output_pos.push_back(probabilities.back().Add()); |
|
|
|
probabilities >> util::stream::kRecycle; |
|
backoffs >> util::stream::kRecycle; |
|
combined >> util::stream::kRecycle; |
|
|
|
|
|
PrintARPA(vocab_null.get(), write_file, counts).Run(output_pos); |
|
} |
|
|
|
}} |
|
|