// Copyright 2010 the V8 project authors. All rights reserved. | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are | |
// met: | |
// | |
// * Redistributions of source code must retain the above copyright | |
// notice, this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above | |
// copyright notice, this list of conditions and the following | |
// disclaimer in the documentation and/or other materials provided | |
// with the distribution. | |
// * Neither the name of Google Inc. nor the names of its | |
// contributors may be used to endorse or promote products derived | |
// from this software without specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
namespace double_conversion { | |
static int NormalizedExponent(uint64_t significand, int exponent) { | |
ASSERT(significand != 0); | |
while ((significand & Double::kHiddenBit) == 0) { | |
significand = significand << 1; | |
exponent = exponent - 1; | |
} | |
return exponent; | |
} | |
// Forward declarations: | |
// Returns an estimation of k such that 10^(k-1) <= v < 10^k. | |
static int EstimatePower(int exponent); | |
// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator | |
// and denominator. | |
static void InitialScaledStartValues(uint64_t significand, | |
int exponent, | |
bool lower_boundary_is_closer, | |
int estimated_power, | |
bool need_boundary_deltas, | |
Bignum* numerator, | |
Bignum* denominator, | |
Bignum* delta_minus, | |
Bignum* delta_plus); | |
// Multiplies numerator/denominator so that its values lies in the range 1-10. | |
// Returns decimal_point s.t. | |
// v = numerator'/denominator' * 10^(decimal_point-1) | |
// where numerator' and denominator' are the values of numerator and | |
// denominator after the call to this function. | |
static void FixupMultiply10(int estimated_power, bool is_even, | |
int* decimal_point, | |
Bignum* numerator, Bignum* denominator, | |
Bignum* delta_minus, Bignum* delta_plus); | |
// Generates digits from the left to the right and stops when the generated | |
// digits yield the shortest decimal representation of v. | |
static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, | |
Bignum* delta_minus, Bignum* delta_plus, | |
bool is_even, | |
Vector<char> buffer, int* length); | |
// Generates 'requested_digits' after the decimal point. | |
static void BignumToFixed(int requested_digits, int* decimal_point, | |
Bignum* numerator, Bignum* denominator, | |
Vector<char>(buffer), int* length); | |
// Generates 'count' digits of numerator/denominator. | |
// Once 'count' digits have been produced rounds the result depending on the | |
// remainder (remainders of exactly .5 round upwards). Might update the | |
// decimal_point when rounding up (for example for 0.9999). | |
static void GenerateCountedDigits(int count, int* decimal_point, | |
Bignum* numerator, Bignum* denominator, | |
Vector<char>(buffer), int* length); | |
void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, | |
Vector<char> buffer, int* length, int* decimal_point) { | |
ASSERT(v > 0); | |
ASSERT(!Double(v).IsSpecial()); | |
uint64_t significand; | |
int exponent; | |
bool lower_boundary_is_closer; | |
if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) { | |
float f = static_cast<float>(v); | |
ASSERT(f == v); | |
significand = Single(f).Significand(); | |
exponent = Single(f).Exponent(); | |
lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser(); | |
} else { | |
significand = Double(v).Significand(); | |
exponent = Double(v).Exponent(); | |
lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser(); | |
} | |
bool need_boundary_deltas = | |
(mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE); | |
bool is_even = (significand & 1) == 0; | |
int normalized_exponent = NormalizedExponent(significand, exponent); | |
// estimated_power might be too low by 1. | |
int estimated_power = EstimatePower(normalized_exponent); | |
// Shortcut for Fixed. | |
// The requested digits correspond to the digits after the point. If the | |
// number is much too small, then there is no need in trying to get any | |
// digits. | |
if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { | |
buffer[0] = '\0'; | |
*length = 0; | |
// Set decimal-point to -requested_digits. This is what Gay does. | |
// Note that it should not have any effect anyways since the string is | |
// empty. | |
*decimal_point = -requested_digits; | |
return; | |
} | |
Bignum numerator; | |
Bignum denominator; | |
Bignum delta_minus; | |
Bignum delta_plus; | |
// Make sure the bignum can grow large enough. The smallest double equals | |
// 4e-324. In this case the denominator needs fewer than 324*4 binary digits. | |
// The maximum double is 1.7976931348623157e308 which needs fewer than | |
// 308*4 binary digits. | |
ASSERT(Bignum::kMaxSignificantBits >= 324*4); | |
InitialScaledStartValues(significand, exponent, lower_boundary_is_closer, | |
estimated_power, need_boundary_deltas, | |
&numerator, &denominator, | |
&delta_minus, &delta_plus); | |
// We now have v = (numerator / denominator) * 10^estimated_power. | |
FixupMultiply10(estimated_power, is_even, decimal_point, | |
&numerator, &denominator, | |
&delta_minus, &delta_plus); | |
// We now have v = (numerator / denominator) * 10^(decimal_point-1), and | |
// 1 <= (numerator + delta_plus) / denominator < 10 | |
switch (mode) { | |
case BIGNUM_DTOA_SHORTEST: | |
case BIGNUM_DTOA_SHORTEST_SINGLE: | |
GenerateShortestDigits(&numerator, &denominator, | |
&delta_minus, &delta_plus, | |
is_even, buffer, length); | |
break; | |
case BIGNUM_DTOA_FIXED: | |
BignumToFixed(requested_digits, decimal_point, | |
&numerator, &denominator, | |
buffer, length); | |
break; | |
case BIGNUM_DTOA_PRECISION: | |
GenerateCountedDigits(requested_digits, decimal_point, | |
&numerator, &denominator, | |
buffer, length); | |
break; | |
default: | |
UNREACHABLE(); | |
} | |
buffer[*length] = '\0'; | |
} | |
// The procedure starts generating digits from the left to the right and stops | |
// when the generated digits yield the shortest decimal representation of v. A | |
// decimal representation of v is a number lying closer to v than to any other | |
// double, so it converts to v when read. | |
// | |
// This is true if d, the decimal representation, is between m- and m+, the | |
// upper and lower boundaries. d must be strictly between them if !is_even. | |
// m- := (numerator - delta_minus) / denominator | |
// m+ := (numerator + delta_plus) / denominator | |
// | |
// Precondition: 0 <= (numerator+delta_plus) / denominator < 10. | |
// If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit | |
// will be produced. This should be the standard precondition. | |
static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, | |
Bignum* delta_minus, Bignum* delta_plus, | |
bool is_even, | |
Vector<char> buffer, int* length) { | |
// Small optimization: if delta_minus and delta_plus are the same just reuse | |
// one of the two bignums. | |
if (Bignum::Equal(*delta_minus, *delta_plus)) { | |
delta_plus = delta_minus; | |
} | |
*length = 0; | |
for (;;) { | |
uint16_t digit; | |
digit = numerator->DivideModuloIntBignum(*denominator); | |
ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. | |
// digit = numerator / denominator (integer division). | |
// numerator = numerator % denominator. | |
buffer[(*length)++] = static_cast<char>(digit + '0'); | |
// Can we stop already? | |
// If the remainder of the division is less than the distance to the lower | |
// boundary we can stop. In this case we simply round down (discarding the | |
// remainder). | |
// Similarly we test if we can round up (using the upper boundary). | |
bool in_delta_room_minus; | |
bool in_delta_room_plus; | |
if (is_even) { | |
in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus); | |
} else { | |
in_delta_room_minus = Bignum::Less(*numerator, *delta_minus); | |
} | |
if (is_even) { | |
in_delta_room_plus = | |
Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; | |
} else { | |
in_delta_room_plus = | |
Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; | |
} | |
if (!in_delta_room_minus && !in_delta_room_plus) { | |
// Prepare for next iteration. | |
numerator->Times10(); | |
delta_minus->Times10(); | |
// We optimized delta_plus to be equal to delta_minus (if they share the | |
// same value). So don't multiply delta_plus if they point to the same | |
// object. | |
if (delta_minus != delta_plus) { | |
delta_plus->Times10(); | |
} | |
} else if (in_delta_room_minus && in_delta_room_plus) { | |
// Let's see if 2*numerator < denominator. | |
// If yes, then the next digit would be < 5 and we can round down. | |
int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator); | |
if (compare < 0) { | |
// Remaining digits are less than .5. -> Round down (== do nothing). | |
} else if (compare > 0) { | |
// Remaining digits are more than .5 of denominator. -> Round up. | |
// Note that the last digit could not be a '9' as otherwise the whole | |
// loop would have stopped earlier. | |
// We still have an assert here in case the preconditions were not | |
// satisfied. | |
ASSERT(buffer[(*length) - 1] != '9'); | |
buffer[(*length) - 1]++; | |
} else { | |
// Halfway case. | |
// TODO(floitsch): need a way to solve half-way cases. | |
// For now let's round towards even (since this is what Gay seems to | |
// do). | |
if ((buffer[(*length) - 1] - '0') % 2 == 0) { | |
// Round down => Do nothing. | |
} else { | |
ASSERT(buffer[(*length) - 1] != '9'); | |
buffer[(*length) - 1]++; | |
} | |
} | |
return; | |
} else if (in_delta_room_minus) { | |
// Round down (== do nothing). | |
return; | |
} else { // in_delta_room_plus | |
// Round up. | |
// Note again that the last digit could not be '9' since this would have | |
// stopped the loop earlier. | |
// We still have an ASSERT here, in case the preconditions were not | |
// satisfied. | |
ASSERT(buffer[(*length) -1] != '9'); | |
buffer[(*length) - 1]++; | |
return; | |
} | |
} | |
} | |
// Let v = numerator / denominator < 10. | |
// Then we generate 'count' digits of d = x.xxxxx... (without the decimal point) | |
// from left to right. Once 'count' digits have been produced we decide wether | |
// to round up or down. Remainders of exactly .5 round upwards. Numbers such | |
// as 9.999999 propagate a carry all the way, and change the | |
// exponent (decimal_point), when rounding upwards. | |
static void GenerateCountedDigits(int count, int* decimal_point, | |
Bignum* numerator, Bignum* denominator, | |
Vector<char> buffer, int* length) { | |
ASSERT(count >= 0); | |
for (int i = 0; i < count - 1; ++i) { | |
uint16_t digit; | |
digit = numerator->DivideModuloIntBignum(*denominator); | |
ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. | |
// digit = numerator / denominator (integer division). | |
// numerator = numerator % denominator. | |
buffer[i] = static_cast<char>(digit + '0'); | |
// Prepare for next iteration. | |
numerator->Times10(); | |
} | |
// Generate the last digit. | |
uint16_t digit; | |
digit = numerator->DivideModuloIntBignum(*denominator); | |
if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { | |
digit++; | |
} | |
ASSERT(digit <= 10); | |
buffer[count - 1] = static_cast<char>(digit + '0'); | |
// Correct bad digits (in case we had a sequence of '9's). Propagate the | |
// carry until we hat a non-'9' or til we reach the first digit. | |
for (int i = count - 1; i > 0; --i) { | |
if (buffer[i] != '0' + 10) break; | |
buffer[i] = '0'; | |
buffer[i - 1]++; | |
} | |
if (buffer[0] == '0' + 10) { | |
// Propagate a carry past the top place. | |
buffer[0] = '1'; | |
(*decimal_point)++; | |
} | |
*length = count; | |
} | |
// Generates 'requested_digits' after the decimal point. It might omit | |
// trailing '0's. If the input number is too small then no digits at all are | |
// generated (ex.: 2 fixed digits for 0.00001). | |
// | |
// Input verifies: 1 <= (numerator + delta) / denominator < 10. | |
static void BignumToFixed(int requested_digits, int* decimal_point, | |
Bignum* numerator, Bignum* denominator, | |
Vector<char>(buffer), int* length) { | |
// Note that we have to look at more than just the requested_digits, since | |
// a number could be rounded up. Example: v=0.5 with requested_digits=0. | |
// Even though the power of v equals 0 we can't just stop here. | |
if (-(*decimal_point) > requested_digits) { | |
// The number is definitively too small. | |
// Ex: 0.001 with requested_digits == 1. | |
// Set decimal-point to -requested_digits. This is what Gay does. | |
// Note that it should not have any effect anyways since the string is | |
// empty. | |
*decimal_point = -requested_digits; | |
*length = 0; | |
return; | |
} else if (-(*decimal_point) == requested_digits) { | |
// We only need to verify if the number rounds down or up. | |
// Ex: 0.04 and 0.06 with requested_digits == 1. | |
ASSERT(*decimal_point == -requested_digits); | |
// Initially the fraction lies in range (1, 10]. Multiply the denominator | |
// by 10 so that we can compare more easily. | |
denominator->Times10(); | |
if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { | |
// If the fraction is >= 0.5 then we have to include the rounded | |
// digit. | |
buffer[0] = '1'; | |
*length = 1; | |
(*decimal_point)++; | |
} else { | |
// Note that we caught most of similar cases earlier. | |
*length = 0; | |
} | |
return; | |
} else { | |
// The requested digits correspond to the digits after the point. | |
// The variable 'needed_digits' includes the digits before the point. | |
int needed_digits = (*decimal_point) + requested_digits; | |
GenerateCountedDigits(needed_digits, decimal_point, | |
numerator, denominator, | |
buffer, length); | |
} | |
} | |
// Returns an estimation of k such that 10^(k-1) <= v < 10^k where | |
// v = f * 2^exponent and 2^52 <= f < 2^53. | |
// v is hence a normalized double with the given exponent. The output is an | |
// approximation for the exponent of the decimal approimation .digits * 10^k. | |
// | |
// The result might undershoot by 1 in which case 10^k <= v < 10^k+1. | |
// Note: this property holds for v's upper boundary m+ too. | |
// 10^k <= m+ < 10^k+1. | |
// (see explanation below). | |
// | |
// Examples: | |
// EstimatePower(0) => 16 | |
// EstimatePower(-52) => 0 | |
// | |
// Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0. | |
static int EstimatePower(int exponent) { | |
// This function estimates log10 of v where v = f*2^e (with e == exponent). | |
// Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)). | |
// Note that f is bounded by its container size. Let p = 53 (the double's | |
// significand size). Then 2^(p-1) <= f < 2^p. | |
// | |
// Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close | |
// to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)). | |
// The computed number undershoots by less than 0.631 (when we compute log3 | |
// and not log10). | |
// | |
// Optimization: since we only need an approximated result this computation | |
// can be performed on 64 bit integers. On x86/x64 architecture the speedup is | |
// not really measurable, though. | |
// | |
// Since we want to avoid overshooting we decrement by 1e10 so that | |
// floating-point imprecisions don't affect us. | |
// | |
// Explanation for v's boundary m+: the computation takes advantage of | |
// the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement | |
// (even for denormals where the delta can be much more important). | |
const double k1Log10 = 0.30102999566398114; // 1/lg(10) | |
// For doubles len(f) == 53 (don't forget the hidden bit). | |
const int kSignificandSize = Double::kSignificandSize; | |
double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10); | |
return static_cast<int>(estimate); | |
} | |
// See comments for InitialScaledStartValues. | |
static void InitialScaledStartValuesPositiveExponent( | |
uint64_t significand, int exponent, | |
int estimated_power, bool need_boundary_deltas, | |
Bignum* numerator, Bignum* denominator, | |
Bignum* delta_minus, Bignum* delta_plus) { | |
// A positive exponent implies a positive power. | |
ASSERT(estimated_power >= 0); | |
// Since the estimated_power is positive we simply multiply the denominator | |
// by 10^estimated_power. | |
// numerator = v. | |
numerator->AssignUInt64(significand); | |
numerator->ShiftLeft(exponent); | |
// denominator = 10^estimated_power. | |
denominator->AssignPowerUInt16(10, estimated_power); | |
if (need_boundary_deltas) { | |
// Introduce a common denominator so that the deltas to the boundaries are | |
// integers. | |
denominator->ShiftLeft(1); | |
numerator->ShiftLeft(1); | |
// Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common | |
// denominator (of 2) delta_plus equals 2^e. | |
delta_plus->AssignUInt16(1); | |
delta_plus->ShiftLeft(exponent); | |
// Same for delta_minus. The adjustments if f == 2^p-1 are done later. | |
delta_minus->AssignUInt16(1); | |
delta_minus->ShiftLeft(exponent); | |
} | |
} | |
// See comments for InitialScaledStartValues | |
static void InitialScaledStartValuesNegativeExponentPositivePower( | |
uint64_t significand, int exponent, | |
int estimated_power, bool need_boundary_deltas, | |
Bignum* numerator, Bignum* denominator, | |
Bignum* delta_minus, Bignum* delta_plus) { | |
// v = f * 2^e with e < 0, and with estimated_power >= 0. | |
// This means that e is close to 0 (have a look at how estimated_power is | |
// computed). | |
// numerator = significand | |
// since v = significand * 2^exponent this is equivalent to | |
// numerator = v * / 2^-exponent | |
numerator->AssignUInt64(significand); | |
// denominator = 10^estimated_power * 2^-exponent (with exponent < 0) | |
denominator->AssignPowerUInt16(10, estimated_power); | |
denominator->ShiftLeft(-exponent); | |
if (need_boundary_deltas) { | |
// Introduce a common denominator so that the deltas to the boundaries are | |
// integers. | |
denominator->ShiftLeft(1); | |
numerator->ShiftLeft(1); | |
// Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common | |
// denominator (of 2) delta_plus equals 2^e. | |
// Given that the denominator already includes v's exponent the distance | |
// to the boundaries is simply 1. | |
delta_plus->AssignUInt16(1); | |
// Same for delta_minus. The adjustments if f == 2^p-1 are done later. | |
delta_minus->AssignUInt16(1); | |
} | |
} | |
// See comments for InitialScaledStartValues | |
static void InitialScaledStartValuesNegativeExponentNegativePower( | |
uint64_t significand, int exponent, | |
int estimated_power, bool need_boundary_deltas, | |
Bignum* numerator, Bignum* denominator, | |
Bignum* delta_minus, Bignum* delta_plus) { | |
// Instead of multiplying the denominator with 10^estimated_power we | |
// multiply all values (numerator and deltas) by 10^-estimated_power. | |
// Use numerator as temporary container for power_ten. | |
Bignum* power_ten = numerator; | |
power_ten->AssignPowerUInt16(10, -estimated_power); | |
if (need_boundary_deltas) { | |
// Since power_ten == numerator we must make a copy of 10^estimated_power | |
// before we complete the computation of the numerator. | |
// delta_plus = delta_minus = 10^estimated_power | |
delta_plus->AssignBignum(*power_ten); | |
delta_minus->AssignBignum(*power_ten); | |
} | |
// numerator = significand * 2 * 10^-estimated_power | |
// since v = significand * 2^exponent this is equivalent to | |
// numerator = v * 10^-estimated_power * 2 * 2^-exponent. | |
// Remember: numerator has been abused as power_ten. So no need to assign it | |
// to itself. | |
ASSERT(numerator == power_ten); | |
numerator->MultiplyByUInt64(significand); | |
// denominator = 2 * 2^-exponent with exponent < 0. | |
denominator->AssignUInt16(1); | |
denominator->ShiftLeft(-exponent); | |
if (need_boundary_deltas) { | |
// Introduce a common denominator so that the deltas to the boundaries are | |
// integers. | |
numerator->ShiftLeft(1); | |
denominator->ShiftLeft(1); | |
// With this shift the boundaries have their correct value, since | |
// delta_plus = 10^-estimated_power, and | |
// delta_minus = 10^-estimated_power. | |
// These assignments have been done earlier. | |
// The adjustments if f == 2^p-1 (lower boundary is closer) are done later. | |
} | |
} | |
// Let v = significand * 2^exponent. | |
// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator | |
// and denominator. The functions GenerateShortestDigits and | |
// GenerateCountedDigits will then convert this ratio to its decimal | |
// representation d, with the required accuracy. | |
// Then d * 10^estimated_power is the representation of v. | |
// (Note: the fraction and the estimated_power might get adjusted before | |
// generating the decimal representation.) | |
// | |
// The initial start values consist of: | |
// - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power. | |
// - a scaled (common) denominator. | |
// optionally (used by GenerateShortestDigits to decide if it has the shortest | |
// decimal converting back to v): | |
// - v - m-: the distance to the lower boundary. | |
// - m+ - v: the distance to the upper boundary. | |
// | |
// v, m+, m-, and therefore v - m- and m+ - v all share the same denominator. | |
// | |
// Let ep == estimated_power, then the returned values will satisfy: | |
// v / 10^ep = numerator / denominator. | |
// v's boundarys m- and m+: | |
// m- / 10^ep == v / 10^ep - delta_minus / denominator | |
// m+ / 10^ep == v / 10^ep + delta_plus / denominator | |
// Or in other words: | |
// m- == v - delta_minus * 10^ep / denominator; | |
// m+ == v + delta_plus * 10^ep / denominator; | |
// | |
// Since 10^(k-1) <= v < 10^k (with k == estimated_power) | |
// or 10^k <= v < 10^(k+1) | |
// we then have 0.1 <= numerator/denominator < 1 | |
// or 1 <= numerator/denominator < 10 | |
// | |
// It is then easy to kickstart the digit-generation routine. | |
// | |
// The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST | |
// or BIGNUM_DTOA_SHORTEST_SINGLE. | |
static void InitialScaledStartValues(uint64_t significand, | |
int exponent, | |
bool lower_boundary_is_closer, | |
int estimated_power, | |
bool need_boundary_deltas, | |
Bignum* numerator, | |
Bignum* denominator, | |
Bignum* delta_minus, | |
Bignum* delta_plus) { | |
if (exponent >= 0) { | |
InitialScaledStartValuesPositiveExponent( | |
significand, exponent, estimated_power, need_boundary_deltas, | |
numerator, denominator, delta_minus, delta_plus); | |
} else if (estimated_power >= 0) { | |
InitialScaledStartValuesNegativeExponentPositivePower( | |
significand, exponent, estimated_power, need_boundary_deltas, | |
numerator, denominator, delta_minus, delta_plus); | |
} else { | |
InitialScaledStartValuesNegativeExponentNegativePower( | |
significand, exponent, estimated_power, need_boundary_deltas, | |
numerator, denominator, delta_minus, delta_plus); | |
} | |
if (need_boundary_deltas && lower_boundary_is_closer) { | |
// The lower boundary is closer at half the distance of "normal" numbers. | |
// Increase the common denominator and adapt all but the delta_minus. | |
denominator->ShiftLeft(1); // *2 | |
numerator->ShiftLeft(1); // *2 | |
delta_plus->ShiftLeft(1); // *2 | |
} | |
} | |
// This routine multiplies numerator/denominator so that its values lies in the | |
// range 1-10. That is after a call to this function we have: | |
// 1 <= (numerator + delta_plus) /denominator < 10. | |
// Let numerator the input before modification and numerator' the argument | |
// after modification, then the output-parameter decimal_point is such that | |
// numerator / denominator * 10^estimated_power == | |
// numerator' / denominator' * 10^(decimal_point - 1) | |
// In some cases estimated_power was too low, and this is already the case. We | |
// then simply adjust the power so that 10^(k-1) <= v < 10^k (with k == | |
// estimated_power) but do not touch the numerator or denominator. | |
// Otherwise the routine multiplies the numerator and the deltas by 10. | |
static void FixupMultiply10(int estimated_power, bool is_even, | |
int* decimal_point, | |
Bignum* numerator, Bignum* denominator, | |
Bignum* delta_minus, Bignum* delta_plus) { | |
bool in_range; | |
if (is_even) { | |
// For IEEE doubles half-way cases (in decimal system numbers ending with 5) | |
// are rounded to the closest floating-point number with even significand. | |
in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; | |
} else { | |
in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; | |
} | |
if (in_range) { | |
// Since numerator + delta_plus >= denominator we already have | |
// 1 <= numerator/denominator < 10. Simply update the estimated_power. | |
*decimal_point = estimated_power + 1; | |
} else { | |
*decimal_point = estimated_power; | |
numerator->Times10(); | |
if (Bignum::Equal(*delta_minus, *delta_plus)) { | |
delta_minus->Times10(); | |
delta_plus->AssignBignum(*delta_minus); | |
} else { | |
delta_minus->Times10(); | |
delta_plus->Times10(); | |
} | |
} | |
} | |
} // namespace double_conversion | |