|
from io import BytesIO |
|
import io |
|
import random |
|
|
|
import requests |
|
import string |
|
import time |
|
from PIL import Image, ImageFilter |
|
import numpy as np |
|
import torch |
|
from dw_pose.main import dwpose |
|
from scipy.ndimage import binary_dilation |
|
from transformers import ViTFeatureExtractor, ViTForImageClassification |
|
import torch.nn.functional as F |
|
import transformers |
|
from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler |
|
import os |
|
import pydash as _ |
|
import boto3 |
|
|
|
age_detection_model = ViTForImageClassification.from_pretrained( |
|
'nateraw/vit-age-classifier') |
|
age_detection_transforms = ViTFeatureExtractor.from_pretrained( |
|
'nateraw/vit-age-classifier') |
|
|
|
REPLICATE_API_KEY = "" |
|
|
|
S3_REGION = "fra1" |
|
S3_ACCESS_ID = "0RN7BZXS59HYSBD3VB79" |
|
S3_ACCESS_SECRET = "hfSPgBlWl5jsGHa2xuByVkSpancgVeA2CVQf2EMp" |
|
S3_ENDPOINT_URL = "https://s3.solarcom.ch" |
|
S3_BUCKET_NAME = "pissnelke" |
|
|
|
s3_session = boto3.session.Session() |
|
s3 = s3_session.client( |
|
service_name="s3", |
|
region_name=S3_REGION, |
|
aws_access_key_id=S3_ACCESS_ID, |
|
aws_secret_access_key=S3_ACCESS_SECRET, |
|
endpoint_url=S3_ENDPOINT_URL, |
|
) |
|
|
|
def find_bounding_box(pil_image): |
|
image_np = np.array(pil_image.convert('L')) |
|
white_pixels = np.argwhere(image_np == 255) |
|
x_min, y_min = np.min(white_pixels, axis=0) |
|
x_max, y_max = np.max(white_pixels, axis=0) |
|
return (y_min, x_min), (y_max, x_max) |
|
|
|
def get_mask_replicate(input_pil, positive_prompt, expand_by=0, negative_prompt="", replicate_api_key=""): |
|
|
|
api_endpoint = "https://api.replicate.com/v1/predictions" |
|
headers = { |
|
"Authorization": f"Token {replicate_api_key}" |
|
} |
|
|
|
s3filepath = f"target/{os.urandom(20).hex()}.png" |
|
input_buffer = io.BytesIO() |
|
input_pil = input_pil.convert("RGB") |
|
input_pil.save(input_buffer, 'PNG') |
|
input_buffer.seek(0) |
|
s3.put_object(Bucket=S3_BUCKET_NAME, Key=s3filepath, Body=input_buffer) |
|
|
|
|
|
data = { |
|
"version": "ee871c19efb1941f55f66a3d7d960428c8a5afcb77449547fe8e5a3ab9ebc21c", |
|
"input": { |
|
"image": f"{S3_ENDPOINT_URL}/{S3_BUCKET_NAME}/{s3filepath}", |
|
"mask_prompt": positive_prompt, |
|
"negative_mask_prompt": negative_prompt, |
|
"adjustment_factor": expand_by, |
|
} |
|
} |
|
|
|
|
|
response = requests.post(api_endpoint, json=data, headers=headers) |
|
response_data = response.json() |
|
|
|
print(response_data) |
|
|
|
|
|
while True: |
|
prediction_response = requests.get(f"{api_endpoint}/{response_data['id']}", headers=headers) |
|
prediction_data = prediction_response.json() |
|
|
|
if prediction_data['status'] == 'failed': |
|
raise Exception(prediction_data.get('error')) |
|
|
|
if prediction_data.get('status') == 'succeeded': |
|
output_link = prediction_data['output'][2] |
|
break |
|
|
|
time.sleep(1) |
|
|
|
|
|
output_response = requests.get(output_link) |
|
image_data = BytesIO(output_response.content) |
|
|
|
|
|
output_image = Image.open(image_data) |
|
|
|
return output_image |
|
|
|
def getSizeFromCoords(top_left, bottom_right): |
|
""" |
|
Calculate the width and height of a bounding box. |
|
|
|
Parameters: |
|
bounding_box (tuple): A tuple containing two tuples, |
|
the first is the top-left corner (x_min, y_min) |
|
and the second is the bottom-right corner (x_max, y_max). |
|
|
|
Returns: |
|
tuple: A tuple containing the width and height of the bounding box. |
|
""" |
|
(x_min, y_min), (x_max, y_max) = top_left, bottom_right |
|
width = x_max - x_min |
|
height = y_max - y_min |
|
return {"width": width, "height": height} |
|
|
|
|
|
def crop_to_coords(coords1, coords2, pil_image): |
|
top_left_x, top_left_y = coords1 |
|
bottom_right_x, bottom_right_y = coords2 |
|
cropped_image = pil_image.crop( |
|
(top_left_x, top_left_y, bottom_right_x, bottom_right_y)) |
|
return cropped_image |
|
|
|
|
|
def paste_image_at_coords(dest_image, src_image, coords): |
|
dest_image.paste(src_image, coords) |
|
return dest_image |
|
|
|
|
|
def resize(width, height, maxStretch): |
|
new_width = width * (maxStretch / max(width, height)) |
|
new_height = height * (maxStretch / max(width, height)) |
|
|
|
return {"width": new_width, "height": new_height} |
|
|
|
|
|
def get_is_underage(input_pil): |
|
input_pil = input_pil.convert("RGB") |
|
|
|
inputs = age_detection_transforms(input_pil, return_tensors='pt') |
|
output = age_detection_model(**inputs) |
|
|
|
|
|
probabilities = F.softmax(output['logits'], dim=1) |
|
|
|
|
|
predicted_class = probabilities.argmax().item() |
|
|
|
map = { |
|
"0": "0-2", |
|
"1": "3-9", |
|
"2": "10-19", |
|
"3": "20-29", |
|
"4": "30-39", |
|
"5": "40-49", |
|
"6": "50-59", |
|
"7": "60-69", |
|
"8": "more than 70" |
|
} |
|
|
|
print("Age:", map[str(predicted_class)], "years old") |
|
|
|
if predicted_class < 3: |
|
return True |
|
|
|
return False |
|
|
|
|
|
controlnet = ControlNetModel.from_pretrained( |
|
"lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16 |
|
) |
|
base_pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( |
|
"redstonehero/epicrealism_pureevolutionv5-inpainting", controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
base_pipe.scheduler = DDIMScheduler.from_config(base_pipe.scheduler.config) |
|
base_pipe = base_pipe.to("cuda") |
|
base_pipe.enable_model_cpu_offload() |
|
base_pipe.safety_checker = None |
|
base_pipe.enable_xformers_memory_efficient_attention() |
|
|
|
pipe_with_tit_slider = _.clone_deep(base_pipe) |
|
|
|
pipe_with_tit_slider.load_lora_weights(os.path.join(os.environ.get( |
|
'path', "."), "models", "breastsizeslideroffset.safetensors"), weight_name="breastsizeslideroffset.safetensors", adapter_name="breastsizeslideroffset") |
|
|
|
pipe_with_small_tits = _.clone_deep(pipe_with_tit_slider) |
|
pipe_with_small_tits.set_adapters("breastsizeslideroffset", adapter_weights=[-0.8]) |
|
|
|
pipe_with_medium_tits = _.clone_deep(base_pipe) |
|
|
|
pipe_with_big_tits = _.clone_deep(pipe_with_tit_slider) |
|
pipe_with_big_tits.set_adapters("breastsizeslideroffset", adapter_weights=[0.7]) |
|
|
|
def get_nude(original_pil, original_max_size=2000, generate_max_size=768, positive_prompt="nude girl, pussy, tits", negative_prompt="ugly", steps=20, cfg_scale=7, replicate_api_key="", with_small_tits=False, with_big_tits=False): |
|
try: |
|
exif_data = original_pil._getexif() |
|
orientation_tag = 274 |
|
if exif_data is not None and orientation_tag in exif_data: |
|
orientation = exif_data[orientation_tag] |
|
if orientation == 3: |
|
original_pil = original_pil.rotate(180, expand=True) |
|
elif orientation == 6: |
|
original_pil = original_pil.rotate(270, expand=True) |
|
elif orientation == 8: |
|
original_pil = original_pil.rotate(90, expand=True) |
|
except (AttributeError, KeyError, IndexError): |
|
|
|
pass |
|
|
|
original_max_size = original_max_size or 2000 |
|
generate_max_size = generate_max_size or 768 |
|
positive_prompt = positive_prompt or "nude girl, pussy, tits" |
|
negative_prompt = negative_prompt or "ugly" |
|
steps = steps or 20 |
|
cfg_scale = cfg_scale or 7 |
|
|
|
small_original_image = original_pil.copy() |
|
|
|
small_original_image = small_original_image.convert("RGB") |
|
|
|
small_original_image.thumbnail((original_max_size, original_max_size)) |
|
|
|
start_time = time.time() |
|
is_underage = get_is_underage(small_original_image) |
|
print("get_is_underage", time.time() - start_time, "seconds") |
|
|
|
if is_underage: |
|
raise Exception("Underage") |
|
|
|
person_mask_pil_expanded = get_mask_replicate( |
|
small_original_image, "person", expand_by=20, replicate_api_key=replicate_api_key) |
|
|
|
person_coords1, person_coords2 = find_bounding_box( |
|
person_mask_pil_expanded) |
|
|
|
size = getSizeFromCoords(person_coords1, person_coords2) |
|
|
|
there_height = size["height"] |
|
there_width = size["width"] |
|
|
|
|
|
if there_height >= there_width: |
|
|
|
there_height_to_width = there_width / there_height |
|
then_height = 768 |
|
then_atleast_width = 768 * there_height_to_width |
|
else: |
|
|
|
there_width_to_height = there_height / there_width |
|
then_width = 768 |
|
then_atleast_height = 768 * there_width_to_height |
|
|
|
|
|
if there_height >= there_width: |
|
then_width = then_atleast_width - (then_atleast_width % 8) + 8 |
|
crop_width = there_height * then_width / then_height |
|
crop_height = there_height |
|
else: |
|
then_height = then_atleast_height - (then_atleast_height % 8) + 8 |
|
crop_height = there_width * then_height / then_width |
|
crop_width = there_width |
|
|
|
|
|
crop_coord_1 = ( |
|
person_coords1[0] - (crop_width - size["width"]), person_coords1[1]) |
|
crop_coord_2 = person_coords2 |
|
|
|
if (crop_coord_1[0] < 0): |
|
crop_coord_1 = person_coords1 |
|
crop_coord_2 = ( |
|
person_coords2[0] + (crop_width - size["width"]), person_coords2[1]) |
|
|
|
person_cropped_pil = crop_to_coords( |
|
crop_coord_1, crop_coord_2, small_original_image) |
|
|
|
person_cropped_pil.save("verrueckt.jpg") |
|
|
|
expanded_mask_image = get_mask_replicate( |
|
person_cropped_pil, "bra . blouse . skirt . dress", negative_prompt="face", expand_by=10, replicate_api_key=replicate_api_key) |
|
|
|
person_cropped_width, person_cropped_height = person_cropped_pil.size |
|
new_size = resize(crop_width, crop_height, generate_max_size) |
|
|
|
dwpose_pil = dwpose(person_cropped_pil, 512) |
|
|
|
expanded_mask_image_width, expanded_mask_image_height = expanded_mask_image.size |
|
|
|
dwpose_pil_resized = dwpose_pil.resize( |
|
(int(expanded_mask_image_width), int(expanded_mask_image_height))) |
|
|
|
pipe = base_pipe |
|
|
|
if with_small_tits: |
|
pipe = pipe_with_small_tits |
|
|
|
if with_big_tits: |
|
pipe = pipe_with_big_tits |
|
|
|
end_result_images = pipe( |
|
positive_prompt, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=steps, |
|
guidance_scale=cfg_scale, |
|
eta=1.0, |
|
image=person_cropped_pil, |
|
mask_image=expanded_mask_image, |
|
control_image=dwpose_pil_resized, |
|
num_images_per_prompt=2, |
|
height=round(new_size["height"]), |
|
width=round(new_size["width"]) |
|
).images |
|
|
|
|
|
def create_blurred_edge_mask(image, blur_radius): |
|
mask = Image.new("L", image.size, 0) |
|
mask.paste(255, [blur_radius, blur_radius, mask.width - |
|
blur_radius, mask.height - blur_radius]) |
|
return mask.filter(ImageFilter.GaussianBlur(blur_radius)) |
|
|
|
output_pils = [] |
|
|
|
|
|
for image in end_result_images: |
|
fit_into_group_image = image.resize( |
|
(person_cropped_width, person_cropped_height)) |
|
|
|
|
|
blur_radius = 10 |
|
mask = create_blurred_edge_mask(fit_into_group_image, blur_radius) |
|
|
|
|
|
small_original_image.paste( |
|
fit_into_group_image, (int(crop_coord_1[0]), crop_coord_1[1]), mask) |
|
|
|
output_pils.append(small_original_image) |
|
|
|
return output_pils |
|
|
|
|
|
|