File size: 4,957 Bytes
b793f0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import cv2
import numpy as np
import supervision as sv
import argparse
import torch
import torchvision
from groundingdino.util.inference import Model
from segment_anything import SamPredictor
from MobileSAM.setup_mobile_sam import setup_model
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--MOBILE_SAM_CHECKPOINT_PATH", type=str, default="./EfficientSAM/mobile_sam.pt", help="model"
)
parser.add_argument(
"--SOURCE_IMAGE_PATH", type=str, default="./assets/demo2.jpg", help="path to image file"
)
parser.add_argument(
"--CAPTION", type=str, default="The running dog", help="text prompt for GroundingDINO"
)
parser.add_argument(
"--OUT_FILE_BOX", type=str, default="groundingdino_annotated_image.jpg", help="the output filename"
)
parser.add_argument(
"--OUT_FILE_SEG", type=str, default="grounded_mobile_sam_annotated_image.jpg", help="the output filename"
)
parser.add_argument(
"--OUT_FILE_BIN_MASK", type=str, default="grounded_mobile_sam_bin_mask.jpg", help="the output filename"
)
parser.add_argument("--BOX_THRESHOLD", type=float, default=0.25, help="")
parser.add_argument("--TEXT_THRESHOLD", type=float, default=0.25, help="")
parser.add_argument("--NMS_THRESHOLD", type=float, default=0.8, help="")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser.add_argument(
"--DEVICE", type=str, default=device, help="cuda:[0,1,2,3,4] or cpu"
)
return parser.parse_args()
def main(args):
DEVICE = args.DEVICE
# GroundingDINO config and checkpoint
GROUNDING_DINO_CONFIG_PATH = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
GROUNDING_DINO_CHECKPOINT_PATH = "./groundingdino_swint_ogc.pth"
# Building GroundingDINO inference model
grounding_dino_model = Model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH)
# Building MobileSAM predictor
MOBILE_SAM_CHECKPOINT_PATH = args.MOBILE_SAM_CHECKPOINT_PATH
checkpoint = torch.load(MOBILE_SAM_CHECKPOINT_PATH)
mobile_sam = setup_model()
mobile_sam.load_state_dict(checkpoint, strict=True)
mobile_sam.to(device=DEVICE)
sam_predictor = SamPredictor(mobile_sam)
# Predict classes and hyper-param for GroundingDINO
SOURCE_IMAGE_PATH = args.SOURCE_IMAGE_PATH
CLASSES = [args.CAPTION]
BOX_THRESHOLD = args.BOX_THRESHOLD
TEXT_THRESHOLD = args.TEXT_THRESHOLD
NMS_THRESHOLD = args.NMS_THRESHOLD
# load image
image = cv2.imread(SOURCE_IMAGE_PATH)
# detect objects
detections = grounding_dino_model.predict_with_classes(
image=image,
classes=CLASSES,
box_threshold=BOX_THRESHOLD,
text_threshold=TEXT_THRESHOLD
)
# annotate image with detections
box_annotator = sv.BoxAnnotator()
labels = [
f"{CLASSES[class_id]} {confidence:0.2f}"
for _, _, confidence, class_id, _
in detections]
annotated_frame = box_annotator.annotate(scene=image.copy(), detections=detections, labels=labels)
# save the annotated grounding dino image
cv2.imwrite(args.OUT_FILE_BOX, annotated_frame)
# NMS post process
print(f"Before NMS: {len(detections.xyxy)} boxes")
nms_idx = torchvision.ops.nms(
torch.from_numpy(detections.xyxy),
torch.from_numpy(detections.confidence),
NMS_THRESHOLD
).numpy().tolist()
detections.xyxy = detections.xyxy[nms_idx]
detections.confidence = detections.confidence[nms_idx]
detections.class_id = detections.class_id[nms_idx]
print(f"After NMS: {len(detections.xyxy)} boxes")
# Prompting SAM with detected boxes
def segment(sam_predictor: SamPredictor, image: np.ndarray, xyxy: np.ndarray) -> np.ndarray:
sam_predictor.set_image(image)
result_masks = []
for box in xyxy:
masks, scores, logits = sam_predictor.predict(
box=box,
multimask_output=True
)
index = np.argmax(scores)
result_masks.append(masks[index])
return np.array(result_masks)
# convert detections to masks
detections.mask = segment(
sam_predictor=sam_predictor,
image=cv2.cvtColor(image, cv2.COLOR_BGR2RGB),
xyxy=detections.xyxy
)
binary_mask = detections.mask[0].astype(np.uint8)*255
cv2.imwrite(args.OUT_FILE_BIN_MASK, binary_mask)
# annotate image with detections
box_annotator = sv.BoxAnnotator()
mask_annotator = sv.MaskAnnotator()
labels = [
f"{CLASSES[class_id]} {confidence:0.2f}"
for _, _, confidence, class_id, _
in detections]
annotated_image = mask_annotator.annotate(scene=image.copy(), detections=detections)
annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections, labels=labels)
# save the annotated grounded-sam image
cv2.imwrite(args.OUT_FILE_SEG, annotated_image)
if __name__ == "__main__":
args = parse_args()
main(args)
|