File size: 1,676 Bytes
b793f0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from LightHQSAM.tiny_vit_sam import TinyViT
from segment_anything.modeling import MaskDecoderHQ, PromptEncoder, Sam, TwoWayTransformer

def setup_model():
    prompt_embed_dim = 256
    image_size = 1024
    vit_patch_size = 16
    image_embedding_size = image_size // vit_patch_size
    mobile_sam = Sam(
            image_encoder=TinyViT(img_size=1024, in_chans=3, num_classes=1000,
                embed_dims=[64, 128, 160, 320],
                depths=[2, 2, 6, 2],
                num_heads=[2, 4, 5, 10],
                window_sizes=[7, 7, 14, 7],
                mlp_ratio=4.,
                drop_rate=0.,
                drop_path_rate=0.0,
                use_checkpoint=False,
                mbconv_expand_ratio=4.0,
                local_conv_size=3,
                layer_lr_decay=0.8
            ),
            prompt_encoder=PromptEncoder(
            embed_dim=prompt_embed_dim,
            image_embedding_size=(image_embedding_size, image_embedding_size),
            input_image_size=(image_size, image_size),
            mask_in_chans=16,
            ),
            mask_decoder=MaskDecoderHQ(
                    num_multimask_outputs=3,
                    transformer=TwoWayTransformer(
                    depth=2,
                    embedding_dim=prompt_embed_dim,
                    mlp_dim=2048,
                    num_heads=8,
                ),
                transformer_dim=prompt_embed_dim,
                iou_head_depth=3,
                iou_head_hidden_dim=256,
                vit_dim=160,
            ),
            pixel_mean=[123.675, 116.28, 103.53],
            pixel_std=[58.395, 57.12, 57.375],
        )
    return mobile_sam