|
import torch.nn as nn |
|
|
|
|
|
__all__ = ['repvit_m1'] |
|
|
|
|
|
def _make_divisible(v, divisor, min_value=None): |
|
""" |
|
This function is taken from the original tf repo. |
|
It ensures that all layers have a channel number that is divisible by 8 |
|
It can be seen here: |
|
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py |
|
:param v: |
|
:param divisor: |
|
:param min_value: |
|
:return: |
|
""" |
|
if min_value is None: |
|
min_value = divisor |
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) |
|
|
|
if new_v < 0.9 * v: |
|
new_v += divisor |
|
return new_v |
|
|
|
from timm.models.layers import SqueezeExcite |
|
|
|
import torch |
|
|
|
|
|
|
|
class LayerNorm2d(nn.Module): |
|
def __init__(self, num_channels: int, eps: float = 1e-6) -> None: |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(num_channels)) |
|
self.bias = nn.Parameter(torch.zeros(num_channels)) |
|
self.eps = eps |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
u = x.mean(1, keepdim=True) |
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
x = self.weight[:, None, None] * x + self.bias[:, None, None] |
|
return x |
|
|
|
class Conv2d_BN(torch.nn.Sequential): |
|
def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1, |
|
groups=1, bn_weight_init=1, resolution=-10000): |
|
super().__init__() |
|
self.add_module('c', torch.nn.Conv2d( |
|
a, b, ks, stride, pad, dilation, groups, bias=False)) |
|
self.add_module('bn', torch.nn.BatchNorm2d(b)) |
|
torch.nn.init.constant_(self.bn.weight, bn_weight_init) |
|
torch.nn.init.constant_(self.bn.bias, 0) |
|
|
|
@torch.no_grad() |
|
def fuse(self): |
|
c, bn = self._modules.values() |
|
w = bn.weight / (bn.running_var + bn.eps)**0.5 |
|
w = c.weight * w[:, None, None, None] |
|
b = bn.bias - bn.running_mean * bn.weight / \ |
|
(bn.running_var + bn.eps)**0.5 |
|
m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size( |
|
0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups, |
|
device=c.weight.device) |
|
m.weight.data.copy_(w) |
|
m.bias.data.copy_(b) |
|
return m |
|
|
|
class Residual(torch.nn.Module): |
|
def __init__(self, m, drop=0.): |
|
super().__init__() |
|
self.m = m |
|
self.drop = drop |
|
|
|
def forward(self, x): |
|
if self.training and self.drop > 0: |
|
return x + self.m(x) * torch.rand(x.size(0), 1, 1, 1, |
|
device=x.device).ge_(self.drop).div(1 - self.drop).detach() |
|
else: |
|
return x + self.m(x) |
|
|
|
@torch.no_grad() |
|
def fuse(self): |
|
if isinstance(self.m, Conv2d_BN): |
|
m = self.m.fuse() |
|
assert(m.groups == m.in_channels) |
|
identity = torch.ones(m.weight.shape[0], m.weight.shape[1], 1, 1) |
|
identity = torch.nn.functional.pad(identity, [1,1,1,1]) |
|
m.weight += identity.to(m.weight.device) |
|
return m |
|
elif isinstance(self.m, torch.nn.Conv2d): |
|
m = self.m |
|
assert(m.groups != m.in_channels) |
|
identity = torch.ones(m.weight.shape[0], m.weight.shape[1], 1, 1) |
|
identity = torch.nn.functional.pad(identity, [1,1,1,1]) |
|
m.weight += identity.to(m.weight.device) |
|
return m |
|
else: |
|
return self |
|
|
|
|
|
class RepVGGDW(torch.nn.Module): |
|
def __init__(self, ed) -> None: |
|
super().__init__() |
|
self.conv = Conv2d_BN(ed, ed, 3, 1, 1, groups=ed) |
|
self.conv1 = torch.nn.Conv2d(ed, ed, 1, 1, 0, groups=ed) |
|
self.dim = ed |
|
self.bn = torch.nn.BatchNorm2d(ed) |
|
|
|
def forward(self, x): |
|
return self.bn((self.conv(x) + self.conv1(x)) + x) |
|
|
|
@torch.no_grad() |
|
def fuse(self): |
|
conv = self.conv.fuse() |
|
conv1 = self.conv1 |
|
|
|
conv_w = conv.weight |
|
conv_b = conv.bias |
|
conv1_w = conv1.weight |
|
conv1_b = conv1.bias |
|
|
|
conv1_w = torch.nn.functional.pad(conv1_w, [1,1,1,1]) |
|
|
|
identity = torch.nn.functional.pad(torch.ones(conv1_w.shape[0], conv1_w.shape[1], 1, 1, device=conv1_w.device), [1,1,1,1]) |
|
|
|
final_conv_w = conv_w + conv1_w + identity |
|
final_conv_b = conv_b + conv1_b |
|
|
|
conv.weight.data.copy_(final_conv_w) |
|
conv.bias.data.copy_(final_conv_b) |
|
|
|
bn = self.bn |
|
w = bn.weight / (bn.running_var + bn.eps)**0.5 |
|
w = conv.weight * w[:, None, None, None] |
|
b = bn.bias + (conv.bias - bn.running_mean) * bn.weight / \ |
|
(bn.running_var + bn.eps)**0.5 |
|
conv.weight.data.copy_(w) |
|
conv.bias.data.copy_(b) |
|
return conv |
|
|
|
|
|
class RepViTBlock(nn.Module): |
|
def __init__(self, inp, hidden_dim, oup, kernel_size, stride, use_se, use_hs): |
|
super(RepViTBlock, self).__init__() |
|
assert stride in [1, 2] |
|
|
|
self.identity = stride == 1 and inp == oup |
|
assert(hidden_dim == 2 * inp) |
|
|
|
if stride == 2: |
|
self.token_mixer = nn.Sequential( |
|
Conv2d_BN(inp, inp, kernel_size, stride if inp != 320 else 1, (kernel_size - 1) // 2, groups=inp), |
|
SqueezeExcite(inp, 0.25) if use_se else nn.Identity(), |
|
Conv2d_BN(inp, oup, ks=1, stride=1, pad=0) |
|
) |
|
self.channel_mixer = Residual(nn.Sequential( |
|
|
|
Conv2d_BN(oup, 2 * oup, 1, 1, 0), |
|
nn.GELU() if use_hs else nn.GELU(), |
|
|
|
Conv2d_BN(2 * oup, oup, 1, 1, 0, bn_weight_init=0), |
|
)) |
|
else: |
|
|
|
self.token_mixer = nn.Sequential( |
|
RepVGGDW(inp), |
|
SqueezeExcite(inp, 0.25) if use_se else nn.Identity(), |
|
) |
|
if self.identity: |
|
self.channel_mixer = Residual(nn.Sequential( |
|
|
|
Conv2d_BN(inp, hidden_dim, 1, 1, 0), |
|
nn.GELU() if use_hs else nn.GELU(), |
|
|
|
Conv2d_BN(hidden_dim, oup, 1, 1, 0, bn_weight_init=0), |
|
)) |
|
else: |
|
self.channel_mixer = nn.Sequential( |
|
|
|
Conv2d_BN(inp, hidden_dim, 1, 1, 0), |
|
nn.GELU() if use_hs else nn.GELU(), |
|
|
|
Conv2d_BN(hidden_dim, oup, 1, 1, 0, bn_weight_init=0), |
|
) |
|
|
|
def forward(self, x): |
|
return self.channel_mixer(self.token_mixer(x)) |
|
|
|
from timm.models.vision_transformer import trunc_normal_ |
|
class BN_Linear(torch.nn.Sequential): |
|
def __init__(self, a, b, bias=True, std=0.02): |
|
super().__init__() |
|
self.add_module('bn', torch.nn.BatchNorm1d(a)) |
|
self.add_module('l', torch.nn.Linear(a, b, bias=bias)) |
|
trunc_normal_(self.l.weight, std=std) |
|
if bias: |
|
torch.nn.init.constant_(self.l.bias, 0) |
|
|
|
@torch.no_grad() |
|
def fuse(self): |
|
bn, l = self._modules.values() |
|
w = bn.weight / (bn.running_var + bn.eps)**0.5 |
|
b = bn.bias - self.bn.running_mean * \ |
|
self.bn.weight / (bn.running_var + bn.eps)**0.5 |
|
w = l.weight * w[None, :] |
|
if l.bias is None: |
|
b = b @ self.l.weight.T |
|
else: |
|
b = (l.weight @ b[:, None]).view(-1) + self.l.bias |
|
m = torch.nn.Linear(w.size(1), w.size(0), device=l.weight.device) |
|
m.weight.data.copy_(w) |
|
m.bias.data.copy_(b) |
|
return m |
|
|
|
class Classfier(nn.Module): |
|
def __init__(self, dim, num_classes, distillation=True): |
|
super().__init__() |
|
self.classifier = BN_Linear(dim, num_classes) if num_classes > 0 else torch.nn.Identity() |
|
self.distillation = distillation |
|
if distillation: |
|
self.classifier_dist = BN_Linear(dim, num_classes) if num_classes > 0 else torch.nn.Identity() |
|
|
|
def forward(self, x): |
|
if self.distillation: |
|
x = self.classifier(x), self.classifier_dist(x) |
|
if not self.training: |
|
x = (x[0] + x[1]) / 2 |
|
else: |
|
x = self.classifier(x) |
|
return x |
|
|
|
@torch.no_grad() |
|
def fuse(self): |
|
classifier = self.classifier.fuse() |
|
if self.distillation: |
|
classifier_dist = self.classifier_dist.fuse() |
|
classifier.weight += classifier_dist.weight |
|
classifier.bias += classifier_dist.bias |
|
classifier.weight /= 2 |
|
classifier.bias /= 2 |
|
return classifier |
|
else: |
|
return classifier |
|
|
|
class RepViT(nn.Module): |
|
def __init__(self, cfgs, num_classes=1000, distillation=False, img_size=1024): |
|
super(RepViT, self).__init__() |
|
|
|
self.cfgs = cfgs |
|
|
|
self.img_size = img_size |
|
|
|
|
|
input_channel = self.cfgs[0][2] |
|
patch_embed = torch.nn.Sequential(Conv2d_BN(3, input_channel // 2, 3, 2, 1), torch.nn.GELU(), |
|
Conv2d_BN(input_channel // 2, input_channel, 3, 2, 1)) |
|
layers = [patch_embed] |
|
|
|
block = RepViTBlock |
|
for k, t, c, use_se, use_hs, s in self.cfgs: |
|
output_channel = _make_divisible(c, 8) |
|
exp_size = _make_divisible(input_channel * t, 8) |
|
layers.append(block(input_channel, exp_size, output_channel, k, s, use_se, use_hs)) |
|
input_channel = output_channel |
|
self.features = nn.ModuleList(layers) |
|
|
|
|
|
self.neck = nn.Sequential( |
|
nn.Conv2d( |
|
output_channel, |
|
256, |
|
kernel_size=1, |
|
bias=False, |
|
), |
|
LayerNorm2d(256), |
|
nn.Conv2d( |
|
256, |
|
256, |
|
kernel_size=3, |
|
padding=1, |
|
bias=False, |
|
), |
|
LayerNorm2d(256), |
|
) |
|
|
|
def forward(self, x): |
|
|
|
for f in self.features: |
|
x = f(x) |
|
|
|
x = self.neck(x) |
|
return x, None |
|
|
|
from timm.models import register_model |
|
|
|
@register_model |
|
def repvit(pretrained=False, num_classes = 1000, distillation=False, **kwargs): |
|
""" |
|
Constructs a MobileNetV3-Large model |
|
""" |
|
cfgs = [ |
|
|
|
[3, 2, 80, 1, 0, 1], |
|
[3, 2, 80, 0, 0, 1], |
|
[3, 2, 80, 1, 0, 1], |
|
[3, 2, 80, 0, 0, 1], |
|
[3, 2, 80, 1, 0, 1], |
|
[3, 2, 80, 0, 0, 1], |
|
[3, 2, 80, 0, 0, 1], |
|
[3, 2, 160, 0, 0, 2], |
|
[3, 2, 160, 1, 0, 1], |
|
[3, 2, 160, 0, 0, 1], |
|
[3, 2, 160, 1, 0, 1], |
|
[3, 2, 160, 0, 0, 1], |
|
[3, 2, 160, 1, 0, 1], |
|
[3, 2, 160, 0, 0, 1], |
|
[3, 2, 160, 0, 0, 1], |
|
[3, 2, 320, 0, 1, 2], |
|
[3, 2, 320, 1, 1, 1], |
|
[3, 2, 320, 0, 1, 1], |
|
[3, 2, 320, 1, 1, 1], |
|
[3, 2, 320, 0, 1, 1], |
|
[3, 2, 320, 1, 1, 1], |
|
[3, 2, 320, 0, 1, 1], |
|
[3, 2, 320, 1, 1, 1], |
|
[3, 2, 320, 0, 1, 1], |
|
[3, 2, 320, 1, 1, 1], |
|
[3, 2, 320, 0, 1, 1], |
|
[3, 2, 320, 1, 1, 1], |
|
[3, 2, 320, 0, 1, 1], |
|
[3, 2, 320, 1, 1, 1], |
|
[3, 2, 320, 0, 1, 1], |
|
[3, 2, 320, 1, 1, 1], |
|
[3, 2, 320, 0, 1, 1], |
|
[3, 2, 320, 1, 1, 1], |
|
[3, 2, 320, 0, 1, 1], |
|
[3, 2, 320, 1, 1, 1], |
|
[3, 2, 320, 0, 1, 1], |
|
[3, 2, 320, 1, 1, 1], |
|
[3, 2, 320, 0, 1, 1], |
|
[3, 2, 320, 1, 1, 1], |
|
[3, 2, 320, 0, 1, 1], |
|
[3, 2, 320, 1, 1, 1], |
|
[3, 2, 320, 0, 1, 1], |
|
[3, 2, 320, 1, 1, 1], |
|
[3, 2, 320, 0, 1, 1], |
|
[3, 2, 320, 1, 1, 1], |
|
[3, 2, 320, 0, 1, 1], |
|
[3, 2, 320, 1, 1, 1], |
|
[3, 2, 320, 0, 1, 1], |
|
[3, 2, 320, 1, 1, 1], |
|
[3, 2, 320, 0, 1, 1], |
|
|
|
|
|
[3, 2, 320, 0, 1, 1], |
|
[3, 2, 640, 0, 1, 2], |
|
[3, 2, 640, 1, 1, 1], |
|
[3, 2, 640, 0, 1, 1], |
|
|
|
|
|
] |
|
return RepViT(cfgs, num_classes=num_classes, distillation=distillation) |