|
|
|
|
|
import PIL |
|
import requests |
|
import torch |
|
from io import BytesIO |
|
from diffusers import DiffusionPipeline |
|
|
|
|
|
""" |
|
Step 1: Download demo images |
|
""" |
|
def download_image(url): |
|
response = requests.get(url) |
|
return PIL.Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
|
|
img_url = "https://github.com/IDEA-Research/detrex-storage/blob/main/assets/grounded_sam/paint_by_example/input_image.png?raw=true" |
|
mask_url = "https://github.com/IDEA-Research/detrex-storage/blob/main/assets/grounded_sam/paint_by_example/mask.png?raw=true" |
|
example_url = "https://github.com/IDEA-Research/detrex-storage/blob/main/assets/grounded_sam/paint_by_example/pomeranian_example.jpg?raw=True" |
|
|
|
|
|
init_image = download_image(img_url).resize((512, 512)) |
|
mask_image = download_image(mask_url).resize((512, 512)) |
|
example_image = download_image(example_url).resize((512, 512)) |
|
|
|
|
|
""" |
|
Step 2: Download pretrained weights and initialize model |
|
""" |
|
|
|
cache_dir = "/comp_robot/rentianhe/weights/diffusers/" |
|
|
|
pipe = DiffusionPipeline.from_pretrained( |
|
"Fantasy-Studio/Paint-by-Example", |
|
torch_dtype=torch.float16, |
|
cache_dir=cache_dir, |
|
) |
|
|
|
pipe = pipe.to("cuda:1") |
|
|
|
|
|
""" |
|
Step 3: Run PaintByExample pipeline and save image |
|
""" |
|
image = pipe( |
|
image=init_image, |
|
mask_image=mask_image, |
|
example_image=example_image, |
|
num_inference_steps=200, |
|
).images[0] |
|
|
|
image.save("./paint_by_example_demo.jpg") |
|
|