|
from LightHQSAM.tiny_vit_sam import TinyViT |
|
from segment_anything.modeling import MaskDecoderHQ, PromptEncoder, Sam, TwoWayTransformer |
|
|
|
def setup_model(): |
|
prompt_embed_dim = 256 |
|
image_size = 1024 |
|
vit_patch_size = 16 |
|
image_embedding_size = image_size // vit_patch_size |
|
mobile_sam = Sam( |
|
image_encoder=TinyViT(img_size=1024, in_chans=3, num_classes=1000, |
|
embed_dims=[64, 128, 160, 320], |
|
depths=[2, 2, 6, 2], |
|
num_heads=[2, 4, 5, 10], |
|
window_sizes=[7, 7, 14, 7], |
|
mlp_ratio=4., |
|
drop_rate=0., |
|
drop_path_rate=0.0, |
|
use_checkpoint=False, |
|
mbconv_expand_ratio=4.0, |
|
local_conv_size=3, |
|
layer_lr_decay=0.8 |
|
), |
|
prompt_encoder=PromptEncoder( |
|
embed_dim=prompt_embed_dim, |
|
image_embedding_size=(image_embedding_size, image_embedding_size), |
|
input_image_size=(image_size, image_size), |
|
mask_in_chans=16, |
|
), |
|
mask_decoder=MaskDecoderHQ( |
|
num_multimask_outputs=3, |
|
transformer=TwoWayTransformer( |
|
depth=2, |
|
embedding_dim=prompt_embed_dim, |
|
mlp_dim=2048, |
|
num_heads=8, |
|
), |
|
transformer_dim=prompt_embed_dim, |
|
iou_head_depth=3, |
|
iou_head_hidden_dim=256, |
|
vit_dim=160, |
|
), |
|
pixel_mean=[123.675, 116.28, 103.53], |
|
pixel_std=[58.395, 57.12, 57.375], |
|
) |
|
return mobile_sam |