|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
from functools import partial |
|
|
|
from segment_anything.modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, TwoWayTransformer |
|
from EdgeSAM.rep_vit import RepViT |
|
|
|
|
|
prompt_embed_dim = 256 |
|
image_size = 1024 |
|
vit_patch_size = 16 |
|
image_embedding_size = image_size // vit_patch_size |
|
|
|
|
|
def build_edge_sam(checkpoint=None, upsample_mode="bicubic"): |
|
image_encoder = RepViT( |
|
arch="m1", |
|
img_size=image_size, |
|
upsample_mode=upsample_mode |
|
) |
|
return _build_sam(image_encoder, checkpoint) |
|
|
|
|
|
sam_model_registry = { |
|
"default": build_edge_sam, |
|
"edge_sam": build_edge_sam, |
|
} |
|
|
|
def _build_sam_encoder( |
|
encoder_embed_dim, |
|
encoder_depth, |
|
encoder_num_heads, |
|
encoder_global_attn_indexes, |
|
): |
|
image_encoder = ImageEncoderViT( |
|
depth=encoder_depth, |
|
embed_dim=encoder_embed_dim, |
|
img_size=image_size, |
|
mlp_ratio=4, |
|
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), |
|
num_heads=encoder_num_heads, |
|
patch_size=vit_patch_size, |
|
qkv_bias=True, |
|
use_rel_pos=True, |
|
global_attn_indexes=encoder_global_attn_indexes, |
|
window_size=14, |
|
out_chans=prompt_embed_dim, |
|
) |
|
return image_encoder |
|
|
|
|
|
def _build_sam( |
|
image_encoder, |
|
checkpoint=None, |
|
): |
|
sam = Sam( |
|
image_encoder=image_encoder, |
|
prompt_encoder=PromptEncoder( |
|
embed_dim=prompt_embed_dim, |
|
image_embedding_size=(image_embedding_size, image_embedding_size), |
|
input_image_size=(image_size, image_size), |
|
mask_in_chans=16, |
|
), |
|
mask_decoder=MaskDecoder( |
|
num_multimask_outputs=3, |
|
transformer=TwoWayTransformer( |
|
depth=2, |
|
embedding_dim=prompt_embed_dim, |
|
mlp_dim=2048, |
|
num_heads=8, |
|
), |
|
transformer_dim=prompt_embed_dim, |
|
iou_head_depth=3, |
|
iou_head_hidden_dim=256, |
|
), |
|
pixel_mean=[123.675, 116.28, 103.53], |
|
pixel_std=[58.395, 57.12, 57.375], |
|
) |
|
sam.eval() |
|
if checkpoint is not None: |
|
with open(checkpoint, "rb") as f: |
|
state_dict = torch.load(f, map_location="cpu") |
|
sam.load_state_dict(state_dict) |
|
return sam |