|
import argparse |
|
from functools import partial |
|
import cv2 |
|
import requests |
|
import os |
|
from io import BytesIO |
|
from PIL import Image |
|
import numpy as np |
|
from pathlib import Path |
|
|
|
|
|
import warnings |
|
|
|
import torch |
|
|
|
|
|
os.system("python setup.py build develop --user") |
|
os.system("pip install packaging==21.3") |
|
os.system("pip install gradio") |
|
|
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
import gradio as gr |
|
|
|
from groundingdino.models import build_model |
|
from groundingdino.util.slconfig import SLConfig |
|
from groundingdino.util.utils import clean_state_dict |
|
from groundingdino.util.inference import annotate, load_image, predict |
|
import groundingdino.datasets.transforms as T |
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
|
|
|
|
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py" |
|
ckpt_repo_id = "ShilongLiu/GroundingDINO" |
|
ckpt_filenmae = "groundingdino_swint_ogc.pth" |
|
|
|
|
|
def load_model_hf(model_config_path, repo_id, filename, device='cpu'): |
|
args = SLConfig.fromfile(model_config_path) |
|
model = build_model(args) |
|
args.device = device |
|
|
|
cache_file = hf_hub_download(repo_id=repo_id, filename=filename) |
|
checkpoint = torch.load(cache_file, map_location='cpu') |
|
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False) |
|
print("Model loaded from {} \n => {}".format(cache_file, log)) |
|
_ = model.eval() |
|
return model |
|
|
|
def image_transform_grounding(init_image): |
|
transform = T.Compose([ |
|
T.RandomResize([800], max_size=1333), |
|
T.ToTensor(), |
|
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
]) |
|
image, _ = transform(init_image, None) |
|
return init_image, image |
|
|
|
def image_transform_grounding_for_vis(init_image): |
|
transform = T.Compose([ |
|
T.RandomResize([800], max_size=1333), |
|
]) |
|
image, _ = transform(init_image, None) |
|
return image |
|
|
|
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae) |
|
|
|
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold): |
|
init_image = input_image.convert("RGB") |
|
original_size = init_image.size |
|
|
|
_, image_tensor = image_transform_grounding(init_image) |
|
image_pil: Image = image_transform_grounding_for_vis(init_image) |
|
|
|
|
|
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='cpu') |
|
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases) |
|
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)) |
|
|
|
|
|
return image_with_box |
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser("Grounding DINO demo", add_help=True) |
|
parser.add_argument("--debug", action="store_true", help="using debug mode") |
|
parser.add_argument("--share", action="store_true", help="share the app") |
|
args = parser.parse_args() |
|
|
|
block = gr.Blocks().queue() |
|
with block: |
|
gr.Markdown("# [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO)") |
|
gr.Markdown("### Open-World Detection with Grounding DINO") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(source='upload', type="pil") |
|
grounding_caption = gr.Textbox(label="Detection Prompt") |
|
run_button = gr.Button(label="Run") |
|
with gr.Accordion("Advanced options", open=False): |
|
box_threshold = gr.Slider( |
|
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001 |
|
) |
|
text_threshold = gr.Slider( |
|
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001 |
|
) |
|
|
|
with gr.Column(): |
|
gallery = gr.outputs.Image( |
|
type="pil", |
|
|
|
).style(full_width=True, full_height=True) |
|
|
|
|
|
|
|
run_button.click(fn=run_grounding, inputs=[ |
|
input_image, grounding_caption, box_threshold, text_threshold], outputs=[gallery]) |
|
|
|
|
|
block.launch(server_name='0.0.0.0', server_port=7579, debug=args.debug, share=args.share) |
|
|
|
|